

Challenges and Opportunities for State DOTs to use the SHRP 2 Naturalistic Driving Study Data

THE UNIVERSITY OF LOWA

Shauna Hallmark and Dan McGehee March 13, 2014 AASHTO SHRP2 Safety Task Force

SHRP 2 S08d: Rural Curves

- Assess the relationship between driver behavior and characteristics, roadway factors, environmental factors, and likelihood of lane departures using NDS and roadway data
 - Develop models to quantify the relationship between driver behavior and the roadway environment
 - Focus on curves on rural 2-lane paved roadways

SHRP 2 S08d – Research Questions

- Define curve area of influence
 - When do drivers begin reacting to the curve (implications for sign placement, sight distance)
- Define relationship between driver distraction, other driver, roadway, and environmental characteristics and risk of lane departure
 - Impact of countermeasures
 - Impact of specific roadway features (i.e. radius)
 - Impact of distraction/driver characteristics

SHRP 2 S08d – Rationale for Selection of Topic/Methodologies

- SHRP 2 S02 identified rationale for selection of research questions using SHRP 2 NDS data
- Does it matter to stakeholders?
 - State DOTs
 - Lane departure crashes ~ 50% fatal crashes
 - Curves have 3 x crash rate, of significant interest to state/local agencies

SHRP 2 S08d – Rationale for Selection of Topic/Methodologies

- Are NDS data the right data (i.e. would simulation, crash data, etc. be better)
 - Crash data does not have information about what drivers are doing before lane departure event, no information about what is happening when all goes well, simulation is limited

 — no real driver response)

SHRP 2 S08d – Rationale for Selection of Topic/Methodologies

- Can the data support the research question (evolving as we learn more about the data)
 - ISU team reviewed sample data set (variables likely to be available, accuracy, frequency)
 - Adjusted expectations as new information became available

Data sources: ESRI, Florida DOT

SHRP 2 S08d – Rationale for Selection of Topic/Methodologies

- Is the research question structured so the results help stakeholders?
 - Tried to structure so results reflected what DOTs/local agencies expect (odds ratio rather than complicated statistical equations - as appropriate)
- Structured team to have varied expertise
 - Roadway data
 - Traffic engineering
 - Human factors
 - NDS data
 - GIS expertise
- Time and resources needed to address topic
 - i.e. calculated how long to manually reduce driver face video
 - Weighed sample size against practicality of reducing data

Big Picture Challenges/Lessons Learned

- Ability to obtain IRB with home institution and data sharing agreement with VTTI
 - Takes much longer than expected
 - Start early
- Ability to securely store potentially identifying information (GPS traces, forward video, etc.)
 - Needed to have IT people trained in IRB, how to back up datasets
- Experience with large datasets
 - Data quality issues
 - Managing large data
 - Manual versus automated data reduction
 - Noise (uninformed analyses may have erroneous results)
 - Statistical model to pick out driver upstream response point in some cases indicated a point far beyond curve sight distance

Big Picture Challenges/Lessons Learned

- Understanding of diverse datasets
 - roadway data (potentially multiple datasets)
 - human factors (multiple data streams)
 - Sufficient understanding of GIS/spatial analyses to understand linking roadway/NDS data
 - Formed team with diverse talents
 - took time to understand data, data collection methods
 - Worked with VTTI/CTRE as needed to ask questions, understand data, budgeted time for these efforts

Data Request Challenges

- Identification of appropriate research questions
 - Can the research question be supported by the data?
 - Level of manual data reduction necessary to extract needed data
 - If processes are automated, needs quality assurance protocols
- Current understanding of how NDS/roadway data were linked
 - Data not linked in manner typically understood by roadway researchers (multiple GPS points linked to one segment rather than GPS points linked to corresponding segments),
 - Not clear if data be queried to extract a particular roadway of interest (e.g. rural 2-lane paved curves with radius < 2000 ft.) without additional manipulation
 - Need to consider how to target particular roadway type

Data Request Challenges

- Significant resources to run queries
 - Need to set appropriate filters
 - Tried to understand data first
 - Worked with VTTI to decide how to set filters (iterative process)
 - Need to understand what data variables are available (accuracy, noise, consistency)
 - Reviewed sample dataset
 - Requested small dataset first (adapted research question as necessary)
 - Reviewed data dictionaries
 - Reviewed how variables were collected

Example of Challenges/Resolution

- Steering wheel position less available than expected for S08
 - Used to establish reaction point
 - Altered methodology for research question
 - May give indication of drowsy driving (not able to target drowsy drivers in data request)
- Difficulty in determing when sensors are working to set filters
 - Reviewed initial data
 - Fine-tuned query for final dataset
 - Issues may be resolved as VTTI provides more info on sensor availability/accuracy
- Need to confirm availability/accuracy of desired output based on research needs

Early implementation

- Select topics likely to be successful in early stages until:
 - Body of researchers have expertise
 - Better estimates for costs for data extraction/reduction are available
 - Challenges/limitations of dataset are better understood

Early Implementation Topics

Typology of Crash/Near-crashes in the SHRP 2 Naturalistic Driving Study Data

- Will be difficult in short term to determine what can be conducted within specific/time resources
- Review of safety critical events will provide insight into where resources could be best expended
- SHRP 2/VVTI plans to reduce variables for crash/nearcrash
 - 20 seconds before/10 seconds after
 - ~ 700 crashes
 - ~ 7000 near-crashes

Typology of Crash/Near-crashes in the SHRP 2 Naturalistic Driving Study Data

- Summarize crash/near-crash event files (already prepared by VTTI)
 - Crash type
 - Roadway types
 - Driver factors
 - Environmental factor
- Summarize recommendations for types of analyzes that be conducted most efficiently in short-term

Evaluating Rural Intersection Safety Risk

- ✤ Rural intersections account for 30% of rural crashes
- Safety issues of rural intersections not well understood
- Research objective is to evaluate relationship between roadway, driver, and environmental characteristics and rural intersection crash risk
- Phase I: funded by Iowa DOT
 - Around 50 intersections
 - Evaluation of data
 - Proof of concept
- Phase II
 - Pooled fund or implementation project
 - 500 intersections

Image source: FHWA

Evaluation of Driver Seat Belt Compliance

- Use trip level summary
- Summarize factors associated with seat belt compliance/noncompliance
 - Trip characteristics
 - \circ Time of day
 - $_{\odot}$ Vehicle type
 - \circ Month
 - $_{\odot}$ Day of week
 - $_{\odot}$ Trip duration
 - Driver characteristics
 - Risky behavior (number of violations, crashes)
 - Medical condition
 - \circ Gender
 - $\circ \ \text{Age}$
 - o Education level
- Initial analysis conducted for Iowa DOT

Image source: FHWA

Other early implementation ideas

Turning movements at signalized intersections

- Intersection conflicts serious concern particularly for older drivers
- Reasonably easy to identify intersections
- MRI study shows some early results for intersection study

