

SHRP2 R15B Identifying and Managing Utility Conflicts

SHRP2 Peer Exchange Webinar

February 5, 2019

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Welcome and Agenda

- Introduction and Opening Remarks
- Overview and Status of R15B Product
- IAP State Challenges and Strategies
 - Updates from IAP States
- Use of Bentley SUE/SUDA at State DOTs
 - SUE/SUDA Implementation Strategies Presentation by Bentley Systems
 - SUE/SUDA at TXDOT Presentation by TXDOT
 - Implementation of SUE/SUDA at Utah DOT Presentation by Utah DOT

Agenda

	genda		
	5 minutes	Introductions & Opening Remarks	
ſ		Introductions	All
		Objective of Call	Ross Gray
		Opening Remarks	AASHTO/FHWA
	10 minutes	Overview and Status of R15B Product	
		5 minutes Introductions & Opening Remarks • Introductions • Objective of Call • Opening Remarks • Opening Remarks 10 minutes Overview and Status of R15B Product • Implementation closeout/end of technical support • Update on technical assistance activities by FHWA/AASHTO/SME 30 mins IAP State Challenges and Strategies • Update from all IAP States, with a focus on the following: • Leadership buy-in • IT support • Logistical challenges • Plan for upcoming months • Presentation by Bentley Systems • SUE/SUDA Implementation Strategies • Presentation by TxDOT • Use of SUE/SUDA at TxDOT • Use of SUE/SUDA at TxDOT	FHWA
		Update on technical assistance activities by	Cesar Quiroga
		FHWA/AASHTO/SME	
	30 mins	IAP State Challenges and Strategies	
		Update from all IAP States, with a focus on the	Cesar Quiroga
		following:	IAP States: California, Delaware,
		Leadership buy-in	lowa, Kentucky, Maryland,
		IT support	Michigan, Montana, Oklahoma,
		Logistical challenges	Oregon, Pennsylvania, South
		Plan for upcoming months	Carolina, South Dakota, Texas,
			Utah, Vermont, Washington
45 minutes (Use of Bentley SUE/SUDA at State DOTs	
		Presentation by Bentley Systems	Sonya Pieterse
		-	
			Ab Maamar-Tayeb
		· · · · · · · · · · · · · · · · · · ·	
		Implementation of SUE/SUDA at Utah DOT	Bob Peterson
ĺ		 Use of Bentley SUE/SUDA at State DOTs Presentation by Bentley Systems SUE/SUDA Implementation Strategies Presentation by TxDOT Use of SUE/SUDA at TxDOT Presentation by Utah DOT 	3
4			

Overview and Status of R15B Product

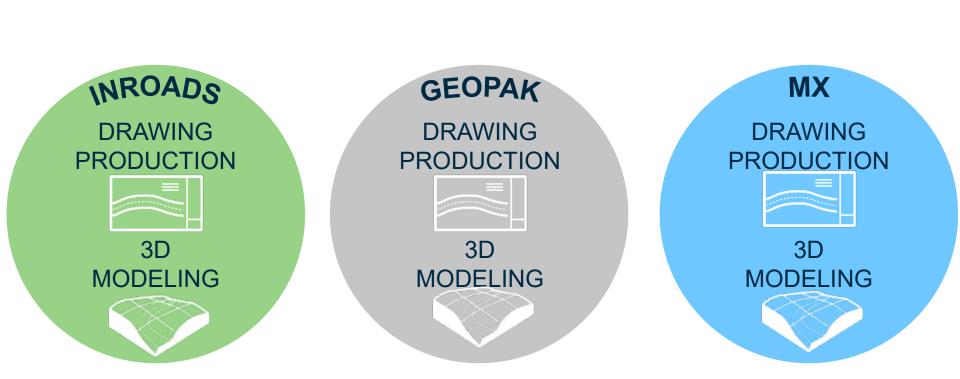
- Implementation closeout/end of technical support (Julie Johnson)
- Update on technical assistance activities by FHWA/AASHTO/SME (Cesar Quiroga)

IAP State Challenges and Strategies

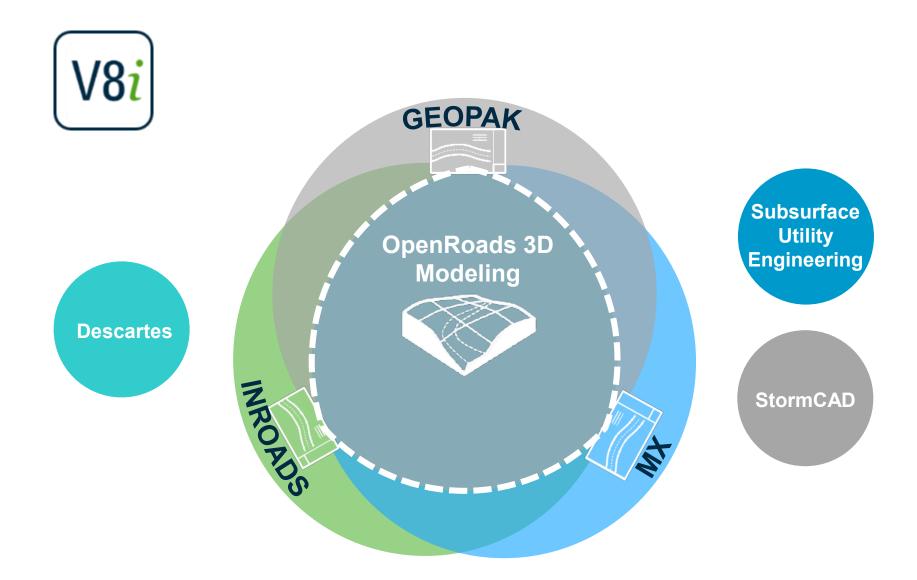
- California
- Delaware
- Iowa
- Kentucky
- Maryland
- Michigan
- Montana
- Oklahoma
- Oregon
- Pennsylvania

- South Carolina
- South Dakota
- Texas
- Utah
- Vermont
- Washington

Subsurface Utilities

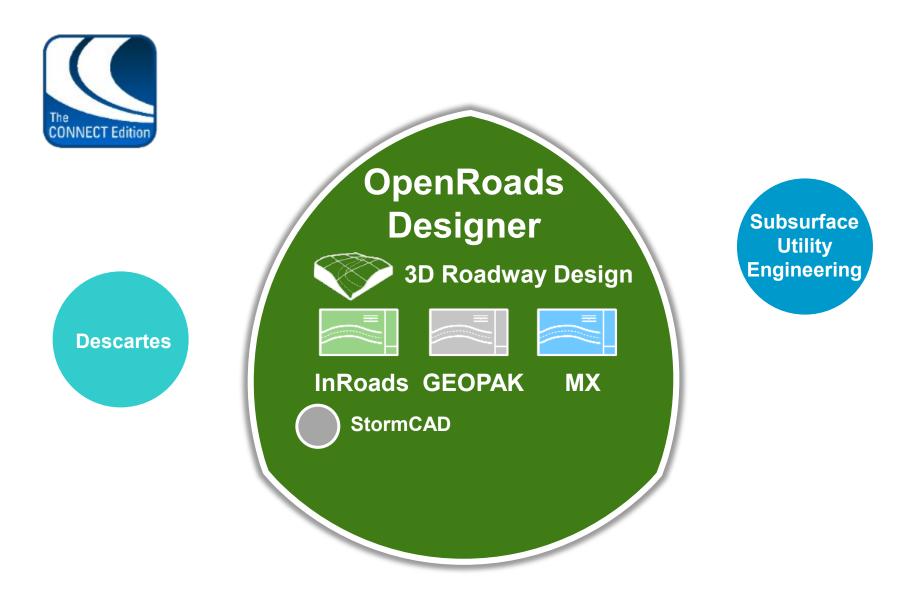

Sonya Pieterse, Senior Application Engineer Bentley Systems Inc.

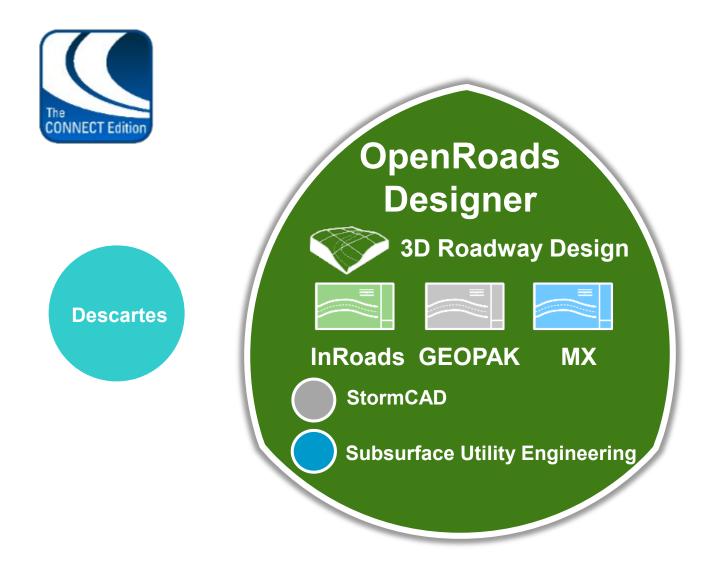
Agenda

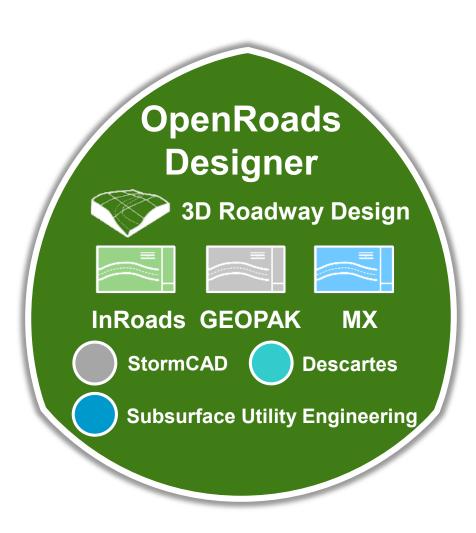

- OpenRoads Designer and Subsurface Utilities
- Licensing
- Subsurface Utility Capabilities
- Importing from other data
- Clash Detection
- Constructability
- Subsurface Utility Configuration: Cells, Element Templates, and Hydraulic Properties
- How to get setup options

Please make a note of your questions and we will do our best to answer them after Bob Peterson's presentation.

V8







Subsurface Utilities

Subsurface Utilities is the nom du jour

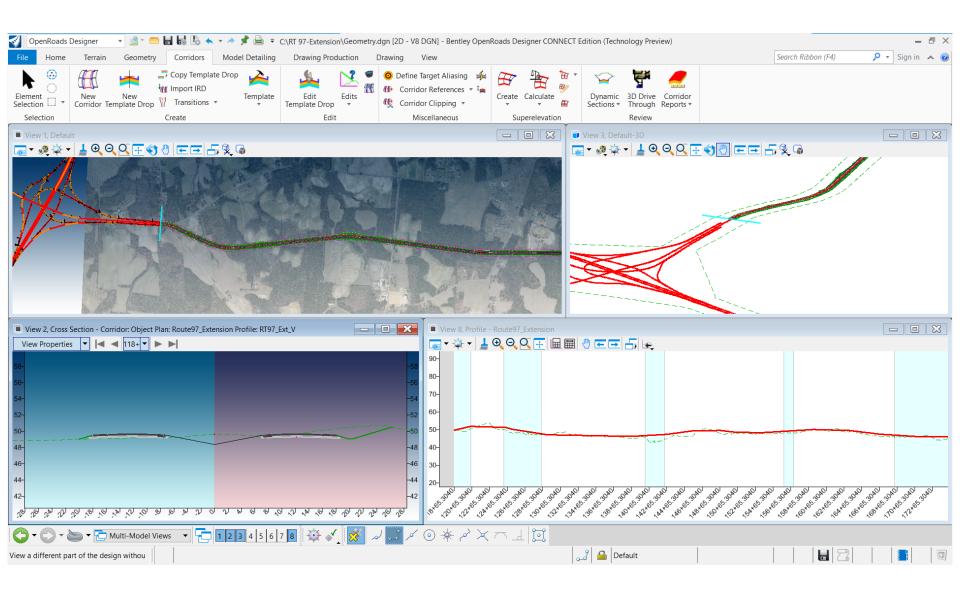
- You may see it abbreviated as SU
- Replaces the name "Subsurface Utilities Design and Analysis (SUDA)"
- And "Subsurface Utility Engineering (SUE)"
- Any point or linear utility that needs to be modeled
- It's part of OpenRoads Designer
- Encompasses the OpenFlows products StormCAD/CivilStorm/SewerCAD/SewerGEMS

Bent

Subsurface Licensing

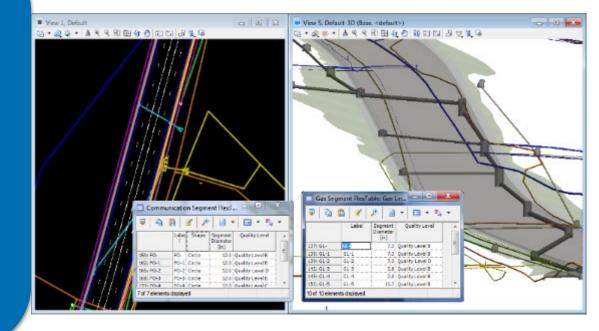
If you own this license:	Drainage Functions	Utility Functions
 Any OpenRoads Technology (SS4): GEOPAK PowerGEOPAK InRoads PowerInRoads MX 	 StormCAD which includes storm water design and analysis. Maximum of 100 inlets per drainage model. Storm water attributes. 	• Utilities can be modeled in 3D.
Any of the OpenRoads technology in SS4 above plus a SUE license.	 Same hydraulic calculation capabilities as above. 	 Utilities can be modeled in 3D. Unique Utility Attributes. Utility conflict tools/Clash Detection
OpenRoads Designer CONNECT Edition	 StormCAD which includes storm water design and analysis. Maximum of 100 inlets per drainage model. Storm water attributes. 	 Utilities can be modeled in 3D. Unique Utility Attributes. Utility conflict tools/Clash Detection
OpenRoads Designer CONNECT Edition plus the following additional licenses: • StormCAD Unlimited • SewerCAD • CivilStorm • SewerGEMS	 Additional hydraulic calculations depending on which license is activated. 	 Utilities can be modeled in 3D. Unique Utility Attributes. Utility conflict tools/Clash Detection

Bentley^{*}

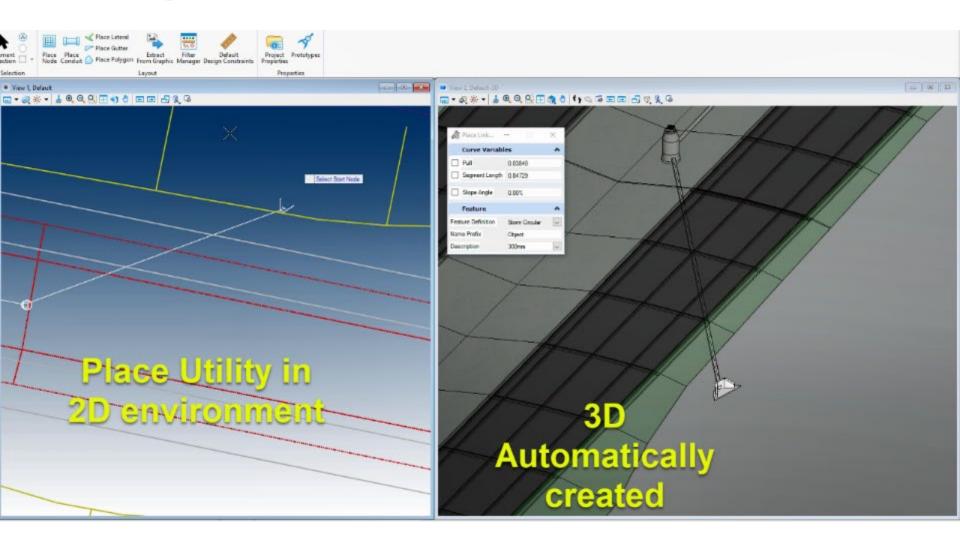

Subsurface Product Activation

 To activate an additional product go to Subsurface Utilities > Tools > License Activation.

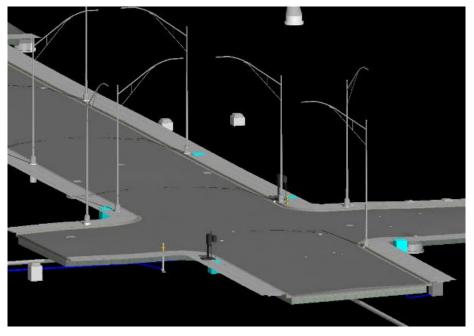
• If activated, an alert that an additional license usage will be logged which may result in incremental cost.

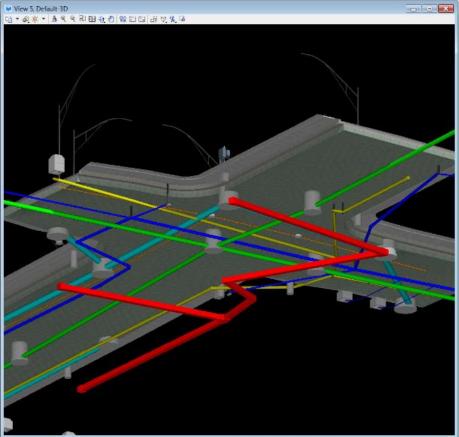

OpenRoads Designer CONNECT Edition Environment

Benfley


Subsurface Utility Capabilities

- Based on OpenRoads
 Modelling
- 3D modeling of all underground assets, existing or proposed.
- Hydraulic Design of Storm and Sanitary Utilities.
- Advanced Conflict Detection / Conflict Management.


Bentley

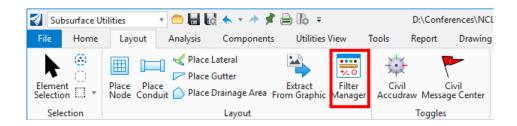

Creating the model

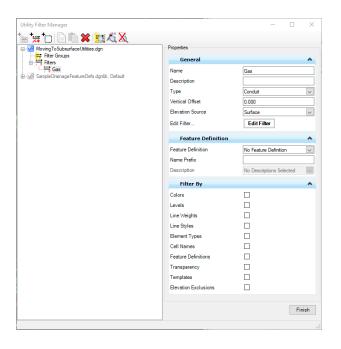
All Utilities can be modeled

Extracting from Existing Graphics

Bentleu

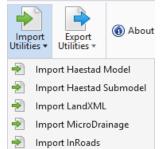
Subsurface Utilities > Layout > Extract from Graphics


 The Extract Utilities from Graphics tool provides the ability to create 3D drainage elements from graphic elements. These elements may result from survey processes, GIS graphic data, OpenRoads Geometry or other sources. But, in every case the elements are DGN graphic elements.



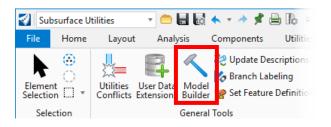
Utility Filter

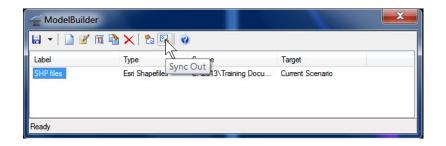
- Created in the dgnlib.
- Extracts Graphics based on stored search parameters.



Importing from other Data Sources

- Subsurface Utilities > Home > Model Import/Export > Import Utilities
 - Haestad
 - LandXML
 - MicroDrainage
 - InRoads S&S
- The following products using SHP files:
 - StormCAD
 - CivilStorm
 - SewerCAD

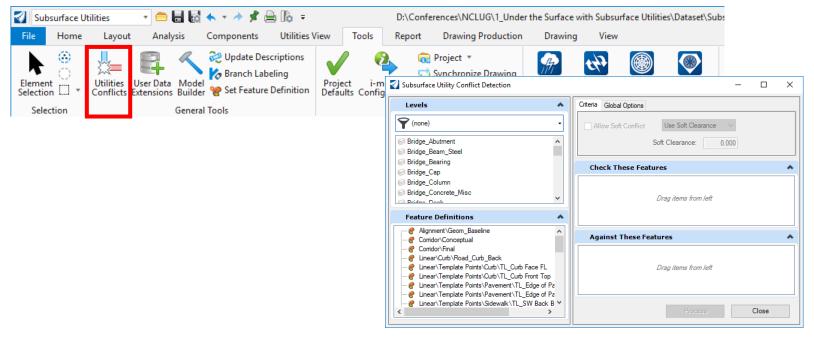



Benfleu

- SewerGEMS
- WaterGEMS
- WaterCAD

Model Builder

- Connects to any data source, including:
 - SHP
 - XLS
 - TXT, CSV
 - Oracle Spatial
- Geospatial sources are preferred.
- Creates 2 way link for import, export and update



Benfleu

Clash Detection

Subsurface Utilities > Tools > Clash Detection

Requires the SUE License in SS4

Detecting and Managing Utility Conflicts

• Training available on Learn Server.

Subsurface Utility Conflict Detection	× 1. Select Feature or Level to check	
Levels (none) Bridge_Abutment Bridge_Beam_Steel Bridge_Cap Bridge_Cap Bridge_Cap Bridge_Column	Criteria Global Options Criteria Global Options Allow Soft Conflict Use Soft Clearance Soft Clearance: 0.000 Check These Features ConduitCommunicationsSegmentFiber Optic Cable	 Select Feature or Level to check against Review Flex Table
Bridge_Concrete_Misc Bridge_Deck Bridge Pier Feature Definitions Conduit\CommunicationsSegment\Fiber Optic Cable Conduit\GasSegment\Gas Line (HDPE) Conduit\WaterSegment\Water Line (HDPE) Conduit\WaterSegment\Water Line (HDPE) Terrain\Existing\Existing Boundary	Conduit/GasSegment/Gas Line (HDPE) Conduit/Waste/VaterSegment/Sanitary Line (A2000 Conduit/WaterSegment/Water Line (HDPE) Conduit/CommunicationsSegment/Fiber Optic Cable Conduit/CommunicationsSegment/Fiber Optic Cable Conduit/Waste/WaterSegment/Sanitary Line (A2000 Conduit/Waste/WaterSegment/Water Line (HDPE)	

Bentley

Setting up a Workspace to include Subsurface Cells, Element Templates, Feature Symbologies & Feature Definitions

Workflow: Creating Subsurface Nodes

- 1. Have Linestyles, Levels, and Materials created.
- 2. Create 2D plan cells for Plan View of structures.
- 3. Create 3D top cells for the 3D top portion of the structures.
- 4. Create 3D bottom cells for the 3D bottom portion of the structures.
- 5. Create Elements Templates for:
 - Plan Points to level for the structure and the 2D cell.
 - Profile Points to level for the profile of the structure.
 - 3D Top Points to level for the structure and the 3D top cell.
 - 3D Bottom Points to level for the structure and the 3D bottom cell.

- 6. Create Feature Symbologies
- 7. Create Feature Definitions

The Parts of a Subsurface Element


- Feature Definition the container which holds all the other parts and defines function.
- Feature Symbology points to element templates for symbology information.
- Element Templates defines the symbology, material, and cells to be used.
- Cell Library:
 - 2D cells are used for plan view presentation.
 - 3D cell for modeling the top and bottom of the utility structures.
 - Can be stored in one or multiple files.

What is a Feature Definition

Feature Definitions link to Feature Symbolgies which link to MicroStation element templates, that define the symbology in the various view spaces:

- Plan
- Profile and
- 3D

X

~

v

Subsurface Feature Definitions

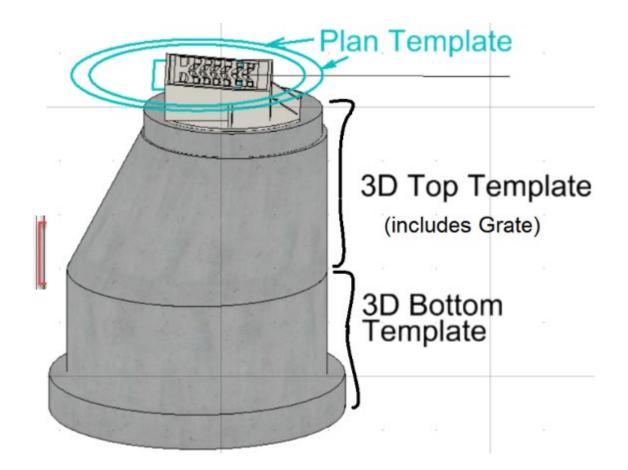
Types of Subsurface Features:

- Nodes \rightarrow Structures (inlets, manholes, headwalls, etc.)

- Conduit \rightarrow Pipes (elliptical, circular, box, arch, etc.)
- Catchments \rightarrow Drainage Areas

Node Feature Symbology

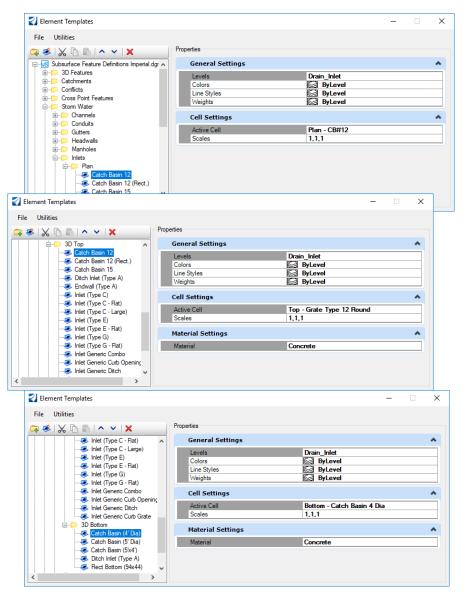
- Feature Symbolgies:
 - Point \rightarrow Plan
 - Profile
 - Solid \rightarrow 3D Element
- Defines the symbology for all 4 views.
- Links to MicroStation Element Templates.
- Feature Symbologies for subsurface nodes typically require 2 3D templates (Top and Bottom).


Properties (OpenRoads Standards)	– 🗆 X				
Selection (1)					
Catch Basin 12	Int				
Defaults	~				
Default Element Template None					
Plan	~				
Element Template Storm Water\Inlets\Plan	NCatch Basin 12				
3D	I Properties (OpenRoads Standards)		-		\times
Element Template None	 Selection (1) 				
Annotation Group None	Storm Water (Node)	Drof		e	

		_
Defaults		*
Default Element Template	None	
Annotation Group		*
Annotation Group	None	
ProfileIntersection		*
Element Template	Cross Point Features Intersecting Profile	
Profile Projection		*
Element Template	Storm Water\Storm Water (Profile)	
Profile		*
Element Template	Storm Water\Storm Water (Profile)	
Curve Element Template	Storm Water\Storm Water (Profile)	

Properties (OpenRoads Standards)	– 🗆 X
 Selection (1) 	
Catch Basin 12	
Defaults	*
Default Element Template	None
3D	*
Top Template	Storm Water\Inlets\3D Top\Catch Basin 12
Bottom Template	None
So	lid

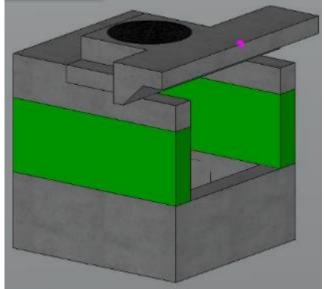
Bentley


Node Feature Symbology

Benfley

Creating Element Templates

- Element Templates define symbology, cells, and materials to be used for feature symbologies.
- One Element Template can be used in multiple features.
- Define Element Templates in dgn library file (*.dgnlib*).
- Separate Element Templates for:
 - Plan
 - Profile
 - 3D Top
 - 3D Bottom



Subsurface Node Creation

- When a Subsurface node is placed, the 3D top and bottom cells are merged.
- Including an extrusion in middle to vary the height.

Extrusion Config Variables:

- SU_3D_Structure_ExtrudeMethod = UP
- SU_3D_Structure_ExtrudeMethod = DOWN

Water Feature Definitions and Hydraulic Properties

- For storm or waste water utility types, you define the hydraulic characteristics by linking to a hydraulic prototype.
- The Conduit sizes are defined in the Conduit Catalog.

		Prototypes – 🗆 🗙				
		draulic Analysis				
Properties (OpenRoads Stand)	ards) —	╳ ू दा 🖉 🗎 🛊 🗄 🔞				
 Selection (1) 			13	🛿 Properties - Conduit - Circular Con	– 🗆	\times
 Selection (1) Storm Water (Co 	and (Circular Concrete	S	ubsurface Utilities Hydraulic Analysis		
Storm Water (Co	ncrete)					
		Circular CMP			V 🔍 🕜 🛛 75%	\sim
		Conc. Ditch		1 - 1 - Add to Selection		
			T			
		Ser Defined	<	Show All>		1 1
				- ·		1
Feature Definition		Ellipse Concrete	P	roperty Search	~	- م
Name	Storm Water (Concrete)	∅ Lateral		Entrance Loss Coefficient	0.000	~
Description	Storm Water (Concrete)			Exit Loss Coefficient	0.000	
Name Seed	Pipe-	PVC (Storm Water)		Expansion Loss Coefficient	0.000	
Item Type		- Ø Channel		Contraction Loss Coefficient	0.000	
Item Type	No Item Type	∅ Gutter		Average Loss Coefficient	0.000	
item i ype	но кет туре	Conventional (2 ft, Normal Cross-slope)	- N	Infiltration/Inflow & Seepage		
Conduit		Conventional (1.5 ft, Normal Cross-slope)		Infiltration Load Type	None	
Trench Template	Components\Trench\Utility Trench OS	Conventional (2 ft, Max Cross-slope)		Flow (Additional Infiltration) (cfs)	0.00	
Function	Trunk Line	V-shaped (2 ft, Normal Cross-slope)				
Network Type	Storm Water Only	∅ Pressure Pipe		Output Options	Summary Results	
Conduit Type	Conduit	Force Main		Physical	Commany Processo	
Shape Orientation	Invert	∅ Catch Basin		Conduit Type	Catalog Conduit	\sim
Hydraulic Prototype		🛛 🎯 Inlet Flush Grate		Catalog Class	Concrete	~
		Inlet Raised Grate		Size	12"	
Prototype	Circular Concrete	Inlet Domed Grate		Section Type	Circle	
User Data Extensions		Inlet Combo (Circular Chamber)		Material	Concrete	
User Data Extensions	<collection: 0="" items=""></collection:>	Combination - obs		Diameter (in)	12.0	
User Data Extensions	<coliection: items="" u=""></coliection:>	Inlet Generic Combo			0.00	
Symbology		Inlet Generic Curb Opening		Fill Depth (ft)	0.00	~
Linear Feature Symbology	Storm Water (Concrete)	Inlet Generic Curb Opening	C	onduit Type		
Profile Feature Symbology	Storm Water (Concrete)	Inlet Generic Ditch		the conduit a catalog type or user define	əd.	
Solid Feature Symbology	Storm Water (Concrete)		1	3.00		
	,,					

Bentleu

Subsurface Utilities Workflow > Components Tab > Catalog or Prototype

Subsurface Configuration Variables

Node and Conduit Feature definition libraries:

- CIVIL_CONTENTMANAGEMENTDGNLIBLIST > \$(_USTN_PROJECTDATA)/dgnlib/Sample Drainage FeatureDefs*.dgnlib
- CIVIL_CONTENTMANAGEMENTDGNLIBLIST > \$(_USTN_PROJECTDATA)/dgnlib/*Conduit Library.dgnlib

The utility libraries also contains the levels, element templates and additional line styles needed for utilities:

- MS_DGNLIBLIST > \$(_USTN_PROJECTDATA)/dgnlib/Sample Drainage FeatureDefs*.dgnlib
- MS_DGNLIBLIST > \$(_USTN_PROJECTDATA)/dgnlib/*Conduit Library.dgnlib

Bentleu

Utility and Drainage cell libraries are loaded with the workspace.

Project Defaults

- Should be created and stored in the dgnlib.
- Stores the following parameters
 - Hydraulic Model Preferences
 - Default drawing scale
 - Units
 - ProjectWise (Optional)
- Can be changed in the design file. This is just a "starting point".

Option	15							\times
		Drawing	Units					
Genera		Drawing	Orlica					
	mpact database af	iter		10				
							Prompts	
	w Color			-				
	only background:							
Read-	only foreground:							
				O	K	Cancel	Help	

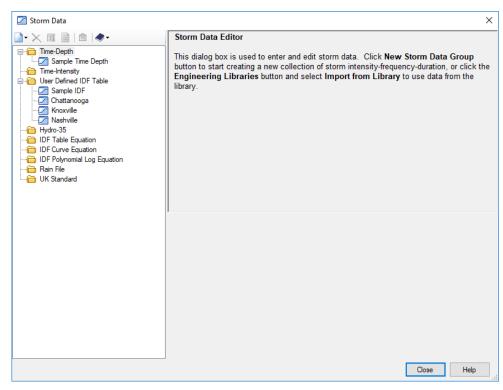
Bentleu

Subsurface Utilities Workflow > Tools Tab > Project Defaults

Default Design Constraints

- Stored in the dgnlib.
- Sets default constraints for Gravity Pipes, Nodes, and Inlets.

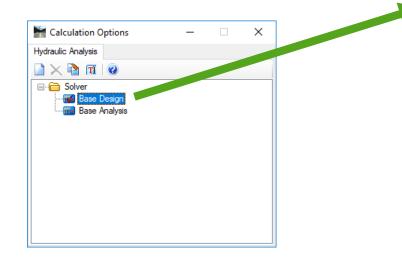
Default Design Constraints			×
	tive Stress	Extended Design Part Full Design Number of Barrels Section Size	
Velocity Constraints Type: Velocity (Minimum): Velocity (Maximum):	Simple ✓ 2.00 ft/s 12.00 ft/s	Is Part Full Design? Percent Full Constraint Type: Simple Percentage Full: 100.0 %	
		Close Search Help	


Subsurface Utilities Workflow > Analysis Tab > Default Design Constraints

Bentleu

Storm Data

Subsurface Utilities > Components > Storm Data


- Stored in a the dgnlib
- Storm Data formats:
 - Time-Depth
 - Time-Intensity
 - IDF Tables
 - Hydro-35
 - IDF Curves
 - Etc.

Bentley

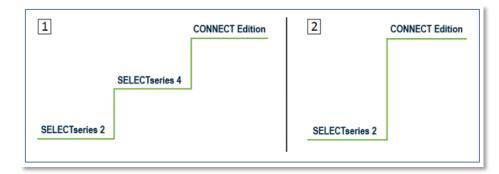
Calculation Options

Subsurface Utilities > Analysis > Calculation > Options

1	Froperties (no selection) - 🗌 🗙						
Su	Subsurface Utilities Engineering Hydraulic Analysis						
Г	✓ 🔊 🔞 75% 🗸						
L	· · · · · · · · · · · · · · · · · · ·						
1	t - ↓ - Add to Selection						
<s< td=""><td colspan="7"><show all=""> 🛛 🦉</show></td></s<>	<show all=""> 🛛 🦉</show>						
Pro	operty Search	~	- م				
Ξ	<general></general>		~				
_	ID	27					
	Label	Base Design					
	Notes						
	Active Numerical Solver	GVF-Rational (StormCAD)					
	Calculation Type	Design					
	Minimum Time of Concentration (hours)	0.083					
Ξ	Gravity Hydraulics						
	Maximum Network Traversals	5					
	Flow Convergence Test	0.001					
	Flow Profile Method	Backwater Analysis					
	Number of Flow Profile Steps	5					
	Hydraulic Grade Convergence Test (ft)	0.00					
	Average Velocity Method	Actual Uniform Flow Velocity					
	Minimum Structure Headloss (ft)	0.00					
	Governing Upstream Pipe Selection Meth						
	Structure Loss Mode	Hydraulic Grade					
	Include Conduit Flow Travel Time in Desi						
	Save Detailed Headloss Data?	False					
	Gravity Friction Method	Manning's					
	Use Explicit Depth and Slope Equations?						
	Ignore Travel Time in Carrier Pipes?	False	_				
	Correct for Partial Area Effects?	False	_				
_	Inlets						
	Active Components for Combination Inlet: Grate and Curb						
	ID Unique identifier assigned to this element.						

Benfley

Flex Tables


Subsurface Utilities > Report > Tables > Flex Tables

Version Subsurface Utilities Hydraulic Analysis								
S C - □ 1 1 = × - □	🔲 FlexTable: Storm Water Nodes (SubsurfaceUtilities Default.sue) — 🗆 🗙							
Tables - Hydraulic Model Tables - Shared Tables - Predefined	♣ 🖹 🗕		• ▲ 🗎	•	0 ▼			
Communications Lines Gas Lines Gas Lines Storm Water Nodes Storm Water Conduits		Label	X (ft)	Y (ft)	Elevation (Top) (ft)	Elevation (Bottom) (ft)	Storm Water Node Type	Utility Investigation Level (Current)
Wastewater Lines	10: INLT-	INLT-	2,006,800.52	402,990.99	31.44	27.80	Inlet Grate	Undetermined
Ø Water Lines	11: CB-	CB-	2,006,610.01	403,076.13	32.67	28.62	Inlet Grate	Undetermined
Ø Conflict Table	12: CB-1	CB-1	2,006,846.05	402,863.98	34.67	28.90	Inlet Grate	Undetermined
	13: INLT-1	INLT-1	2,006,948.02	403,105.89	31.14	27.86	Inlet Grate	Undetermined
	14: MHSW-	MHSW-	2,006,679.90	403,002.38	31.27	27.65	Manhole	Undetermined
	15: MHSW-1	MHSW-1	2,006,697.98	402,954.62	30.97	25.72	Manhole	Undetermined
	16: HW-	HW-	2,006,450.31	403,060.49	-2.75	-2.75		Undetermined
	7 of 7 elements	displayed						

Bentley^{*}

What does Bentley offer

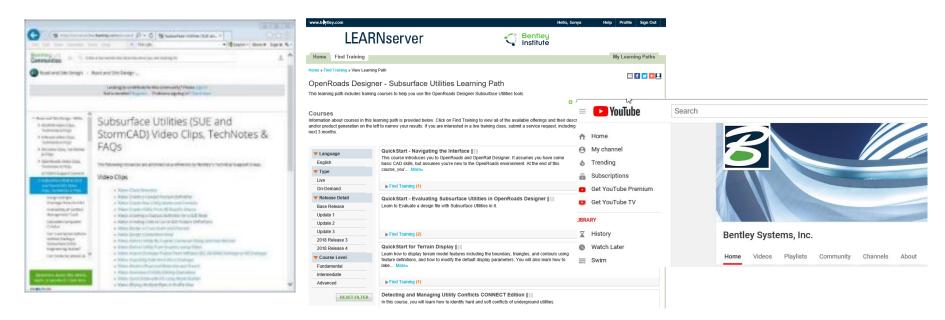
- A number of DOTs are adopting SU as part of their migration to ORD, what needs to be done:
 - Create 2D and 3D cells
 - Setup Pipe Catalogues
 - Define Hydraulic Properties
 - Create Element Templates
 - Create Feature Symbology
 - Define Annotation
 - Create Feature Definition
 - Setup Defaults and Design Standards
 - Setup Configuration Variables
- Bentley can provide the services to do all or any portion of the above
- Consultants

Bentleu

Subsurface Library Creation

Tasks	Time Estimate (min)	Notes
Set Default Units and Formatting	15	
Create 2D Cells	15	Per cell
Create 3D Top Cells	30-45	Per cell
Create 3D Bottom/End Treatment Cells	30-45	Per cell
Create Element Templates	5	Per feature to be created
Create Item Types	1-5	Per item type
Create Catalog	1	Per catalog item
Create Prototypes	1	Per prototype
Create Feature Symbologies	1-2	Per feature symbology
Create Feature Definitions	1-2	Per feature definition
Create Text Favorites and Annotation Groups	120	
Set Default Design Constraints	5	
Set Storm Data	60	
Set Default Calculation Options	15	
Create Utility Filters (optional)	480-960	Depends on the number of Filters to be created
Create Customized Flex Tables (optional)	480-960	Depends on the number of Tables to be created

Bentley^{*}


Things needed to start creating the Subsurface Library

Bentleu

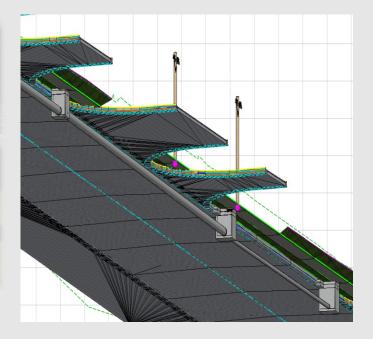
- Standard Details for all Structures to be created.
- Information on standard pipes:
 - Type, materials
 - Sizes
 - Wall thicknesses
- Hydraulic Information on each Inlet:
 - Inlet Type
 - Structure Width and Length
 - Grate Type
 - Grate Information
- Storm Data Information
- Hydraulic Design Standards
- 2D and 3D Seed file.
- Current 2D cell library (if any)
- Levels, Linestyles, and materials DGN libraries

Bentley Communities, Learn and more

- <u>http://communities.bentley.com/products/road_site_design/w/road_and_site_design_wiki/12600.subsurface-utilities-sue-and-suda-video-clips-technotes-faqs</u>
- <u>https://learn.bentley.com/app/Public/ViewLearningPathDetails?lpId=111748</u>
- <u>https://www.youtube.com/BentleySystems</u>

Bentleu

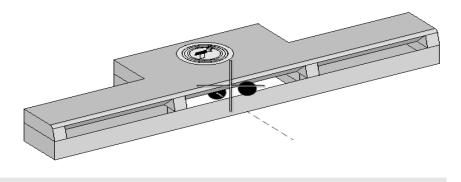
Thank you for your time.

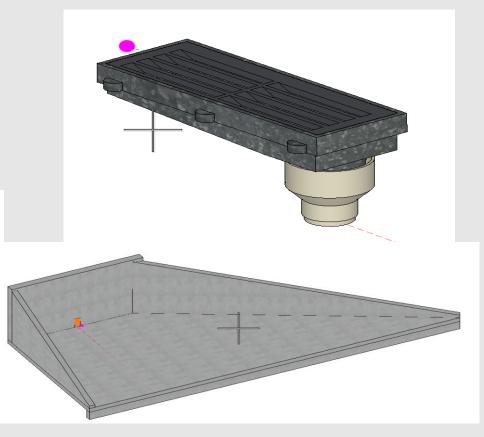

Ab will now give you an overview of what Texas DOT is doing with Subsurface Utilities.

Bentley


TXDOT AND SUDA/SU IMPLEMENTATION

Ab Maamar-Tayeb, P.E., C.F.M TxDOT Design Division, Hydraulics Branch


Greg Faber, S.I.T., CTCM Utility Specialist - South




- 2 Example Project Premont Relief Route CRP District PEPS WA
- 3 Conflict Analysis with 3-D Files
 - Lessons Learned

- 2,762 3D Cells were completed
 - Feature Definitions
 - Element Templates
 - Prototypes (Hydraulic Losses)
 - Service Request for Parametrics

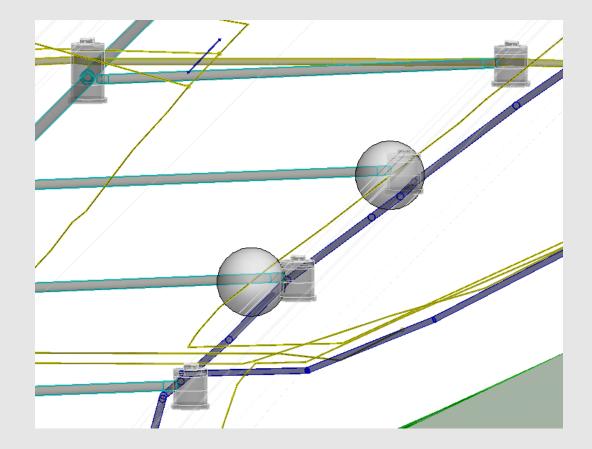
PEPS Work Authorization Scope

EXHIBIT B

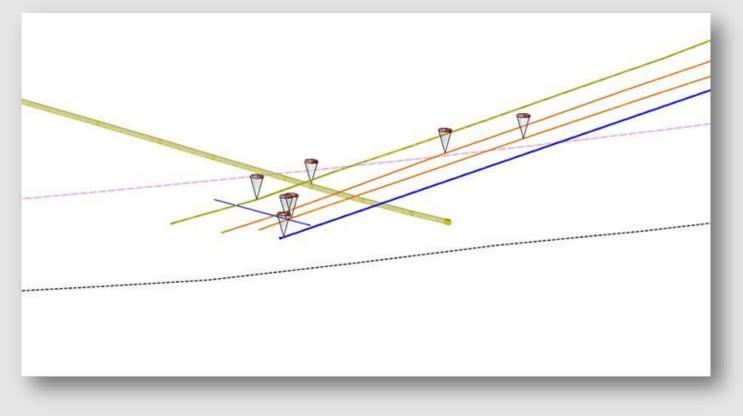
SERVICES TO BE PROVIDED BY THE ENGINEER

CSJ No.: 0255-02-050 Highway: US 281 By-Pass County: Jim Wells District: Corpus Christi

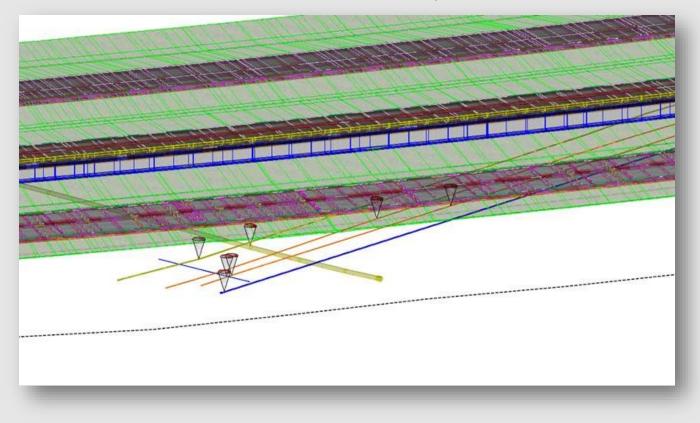
The SUE information obtained from an investigation in 2013 provided by TxDOT will be incorporated into the <u>3D mapping deliverables</u>. Additional Quality Level B and a Quality Level C/D survey of existing overhead facilities will be performed to the new project limits, including:

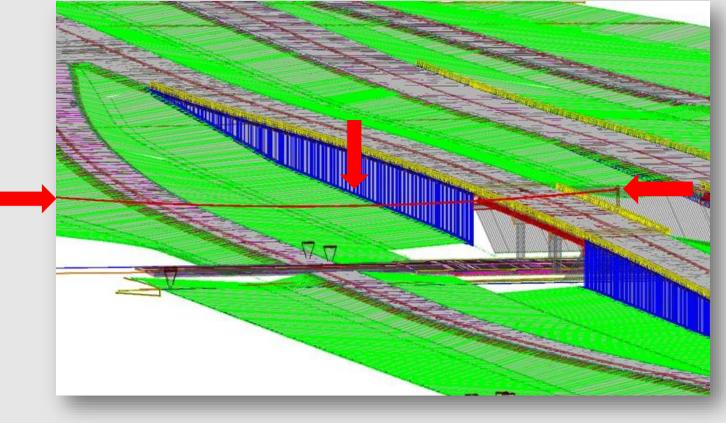

- approximately 700 LF along existing US 281 to the new south project limit;
- approximately 2,100 LF along existing US 281 to the new north project limit;
- approximately 600 LF along NW 8th Street from existing US 281 towards the proposed US 281 By-Pass;
- any new utilities installed within the project limits that were not identified during the original SUE investigation in 2013.

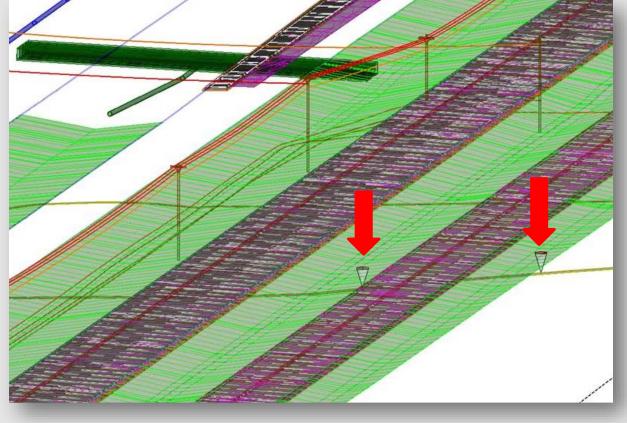
Quality Level A test holes will be excavated at sixty (60) locations as determined by the State.


> an hourly rate basis as directed by the State. Quality Level A test holes to locate wells will be excavated and billed on a unit cost basis.

- 3-D SUE can be incorporated into the 3-D Roadway Design file
- Clash Detection
 - Allows the user to identify 2 separate sets (Set A and Set B) of 3-D graphical elements and detect clearance and physical "clashes" between the 3-D elements sets.
 - Allows the user to interactively and graphically review these clashes, annotate particular clashes and assign the clashes as a conflict.
 - Criteria Tab
 - Specifies "clearance window" around 3-D elements in either of the 2 sets
 - Example, if the elements in Set B get closer than the 6 inches or within the "clearance window" from Set A, then a clash will be reported, this is considered a "clearance clash"
 - If elements in Set B physically touch elements in Set A, the clash is considered a "hard clash"


Subsurface Utility Conflict Detection		
Levels	Criteria Global Options	7
(none) -	Allow Soft Conflict Use Soft Clearan 🔻	
	Soft Clearance: 0.000	
30_Reference	Check This	
₩4 ▼	Storm Sewer A2000 PVC	
Feature Definitions		
E Conduits ⊕. ▷ Conduits	Against That	
Conduits	Cas Line HDPE	
- □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Force Main Sewer Solid Wall PVC	
	Water Line Ductile Iron	
	Process Close	-


Consultant – 3-D Deliverable

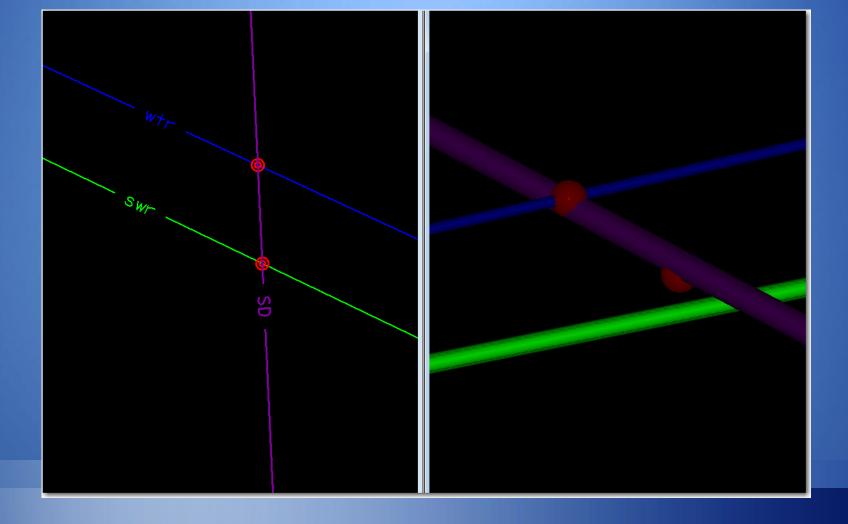

Consultant – 3-D Deliverable with road overlay

Consultant – 3-D Deliverable (Conflict Identified)

Consultant – 3-D Deliverable Level A Test Holes

Design Division - Clash Detection Deliverable

- Execute PEPS WA as early as possible schematic phase or 30% PS&E
- Scope additional Quality Level A Test Holes

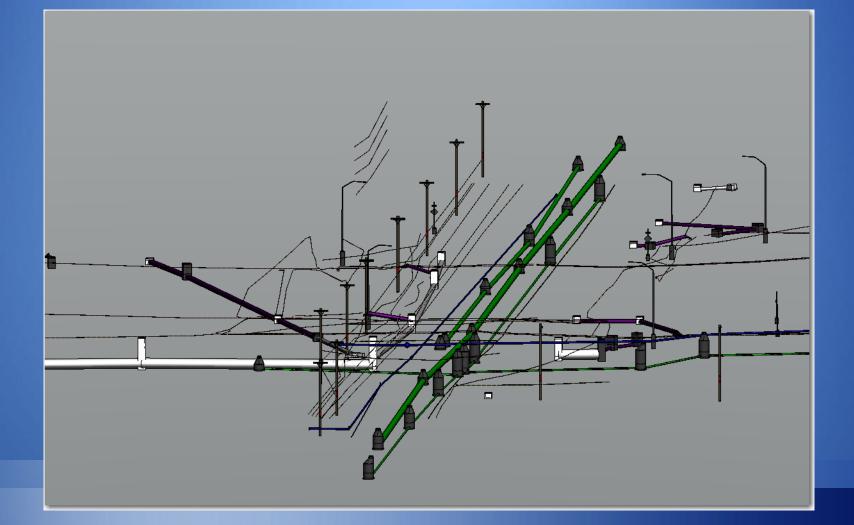


- Utilize Level A Test Holes in initial investigation in areas of high conflict (ditches, bridges, channels, areas of cut, etc.)
- Minimum Level B on crossing utilities/utilities in high conflict areas
- For 3-D Deliverables, using electronic locating devices depths, checking elevations with Level A potholes.
- Scope in the WA, survey grade/as-built data on utility adjustments.

Implementation of Bentley SUDA

Bob Peterson, PE Methods Engineer

Implementation


Implementation

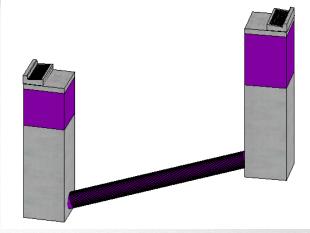
Timeline

- September 2014 UDOT Implements InRoads SS3
- February 2015 UDOT moves to SS4 version with SUE functionality
- July 2017 UDOT slowly (cautiously) moves to Open Roads Designer

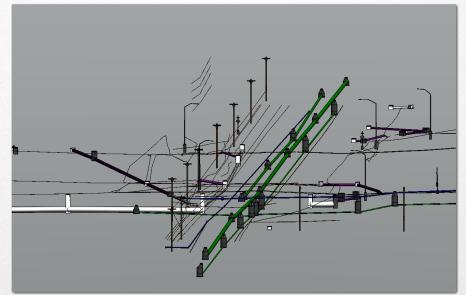
Reasons for Implementing

- Development of statewide utility Oracle database
 - SUE integration with Oracle database
 - Want to use as 3D graphic display
- Clash detection functionality

Workspace Development

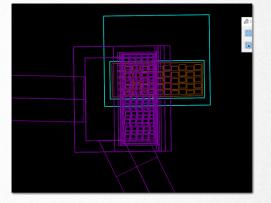

Workspace Development

- Used resources (3D cell, feature definitions) from Bentley workspace
- Created cells for drainage boxes and manholes
- Drainage features developed but don't have prototype values assigned for drainage design
 - Design in SS2 version and either display as solids or import the SDB file into SS4/ORD and assign features
 - Consultant firm on project establishing prototype values that will be incorporated
- Using program for placing non-utility objects (sign posts, signals, delineators, etc)
 - Places object at surface elevation (design or existing)
 - Created objects that go below grade for clash detection



Challenges

 Cells loose symbology/materials when placed with SUDA (cell has multiple material assignments – element template only has one available)



Generic 3D representation vs. realistic visual (power poles, hydrants)

Challenges

- ORD Problems Slowness, limitation of profiles cut
- 3D cells may be too detailed What level of detail is needed?
- Product releases changing schema/functionality
 - Cell rotation problem (just fixed)

 Database compacting – message that dgn graphic didn't match database elements removed (what elements?)

Challenges

- Connecting to database securities, format
- SUE providers giving 3D data (only accurate at pothole location)
 - Concern of liability if elevation incorrect
 - Learn 3D layout tools

Future

- Dgnlib that contains clash detection scenarios (soft clearance values for different utilities, testing criteria setting)
- Connectivity with Oracle database that is refreshed when new data I updated – define feature mapping with SUDA
- Fully functioning drainage design workspace

For More Information

n neering Program Manager

Julie A Johnston, Utility & Value Engineering Program Manager FHWA Office of Infrastructure Preconstruction Team, HICP-10, MI Julie.johnston@dot.gov 202-591-5858

Cesar Quiroga, Sr. Research Engineer Texas A&M Trans. Institute - Reseach & Implementation, San Antonio <u>C-Quiroga@tamu.edu</u> 210-321-1229

Ross Gray, Project Manager Jacobs

Ross.Gray@Jacobs.com 240-650-2194

AASHTO Web Page: <u>http://shrp2.transportation.org</u> FHWA Web Page: <u>https://www.fhwa.dot.gov/goshrp2</u>

