Evaluation of 3D Radar and Sonic Surface Scanner (SSS) Technology for Pavement Forensics (a.k.a. pavement delamination RO6D)

KENTUCKY

Brad Rister P.E. Brad Frazier P.E. Jamie Creech Eng. Tech. Joe Tucker P.E. Kate Kurgan Michael Heitzam P.E.

Outline: Why - Where - What - How

Evaluation of 3D Radar and Sonic Surface Scanner (SSS) Technology for Pavement Forensics (a.k.a. pavement delamination RO6D)

- Why evaluate new technologies for pavement delamination/forensics—RO6D
 - Pavements are an asset to our transportation network in Kentucky.
 - Kentucky has approximately 79,857 miles of roads.
 - Approximately 27% of Kentucky's economy is in the "goods-producing industries" which highly depend on transportation for movement of those goods.
 - IE: UPS international, Ford truck plant, Toyota's North American head quarters, Amazon distribution, Corvette plant, aggregates, farm products, thoroughbred horses, coal, bourbon, aluminum, oil, and 2nd most navigable in-land water ways state behind Alaska.
 - 500 mile radius (8 hour drive) from central KY—120 million people / 40% of US population.
 - Essentially, almost every person in Kentucky uses the road network sometime throughout their lifetime, if not every day along with many others.
 - But—Pavements fail and we have to fix them.

pavement failure could look like this?

Identification of pavement rutting

TRB 1984: ¼ inch water @ 45 mph on average tires will cause hydroplaning On average, there are over 5,760,000 vehicle crashes each year. Approximately 1,259,000 are weather related "USDOT" When we choose to fix these pavements

Pavement designers need good field data to support their pavement rehabilitation plans

Choosing the right fix can save both time and money

AASHTO

"more quality data can translate into better results and solutions for highway projects"

Use Pavement Forensics

Pavement Forensics is....

• Utilizing non-destructive technology (NDT) to better understand what might be causing a pavement to fail and using that information to assist in the pavement rehabilitation design process.

Where: Forensic Project Site--Bourbon Co. US 60

• <u>https://kytranscenter.maps.arcgis.com/home/index.html</u>

Avoid First Change Order all cores came from the same project over a 1.5 mile area

stimated Pavement Forensics Savings to Date August 2018: \$3.7 million

What – How

Looking at the technology: Sonic Surface Scanner (SSS), 3D Radar and Impulse Radar

3D Radar

How are we trying to use the GPR data to determine delamination / deterioration

GPR: Theory of Operation

Reflections are produced when the pulse encounters a material with different dielectric constant Dielectric Constant: Air = 1 Asphalt = 3-5 Concrete = 6-8

Comparison of GPR data to field conditions

Conventional coring is one core per 1,000 ft. alternating lanes

GPR is scanning every six inches at 20 mph.

GPR identifying different pavement layers

How can we figure Dielectric?

- Published references
- Noting target in data and drilling/digging to it for a measurement:
 Ground Truth
- Hyperbola matching: Migration
- Unless the material is the same all the way through (concrete) the dielectric is only a "best guess!"

When looking for delaminations: We are looking for the abnormal dielectric values and/or variation in the signal amplitudes

Voids can be field with Air (low dielectric/low amplitude) Water (high dielectric/high amplitude)

Void area beneath concrete pavement southbound tunnel

GPR signal has negative amplitude (noted as black space) because it doesn't have anything to bounce off of (namely air).

>

3D Radar collection (apply what we know about amplitudes and dielectrics)

Safety First \$1,600

O Core 11 WB

O Core IE1 WB

K. Mart

O Core 4 EB

O Core IE3 WB

O Core IE4 WB

O Core IE5 WB

Star.

0 0

0 0

Cores IE 3 and IE 2

O Core IE3 WB

O Core IE2 WB

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus...

<u>y....</u>

N

W S

Maybe consider a bridge deck deterioration approach for finding delaminations in pavements?

• Use the high and low amplitudes to identify if voids are air/water filled

Similar to Bridge Deck Deterioration Use amplitudes of return signals at interface to determine if voided or not

Producing multiple scans to image reinforcement

Section D: 25% +/- 5% deteriorated

1000

800

600

400

200

3 9 15 21

y(ft)

Ĕ

Section E, F: 3.5% +/- 5% deteriorated

Maybe a statistical approach, with a percent within limits, could be used to find air/water filled voids within pavements

Other uses of 3D Radar

Determining placement of dowel baskets and tie bars in PCCP

Shelbyville Bypass: after diamond grinding to achieve ride acceptance—Longitudinal Tie Bars were exposed

High Tie Bars

High Dowel Baskets

FL

Misaligned Dowel Baskets

How much affected Pavement

- Tie Bars: 2,388 ft.
- Dowel Bar Baskets: 3.25 lane miles
- Approximate cost of 3.7 lane miles of 10 inch concrete pavement (PCCP)
 - \$59/SQYD (2010 average unit bid price)

Total Replacement Costs: \$1,537,776

Tried both air coupled and ground coupled 3D Radar units for locating dowel baskets and tie bars in PCCP

Crosshair: N 38° 14.30471' W 085° 14.13870' Depth: 0.532 ft

Using GPR to Identify Voided Areas Beneath Pavements

Multiple Void Areas Beneath Concrete Pavement

Void depth beneath 10 inch concrete pavement

40 inch deep void

10,000 s.f. of voided areas found

Rate of void growth: 75-100 S.F. per month

3D Radar and Impulse Radar

I-65 differential settlement in the longitudinal joint

Longitudinal Joint: tie bars

165 Longitudinal Joint Settlement with Mobile Lidar

A?????⊒⊒₽₽?;?€????\$??\$\$

e ne for sense i tradicio esta fon esta constructura de la constructura de la constructura de la constructura d
165 Longitudinal Joint Settlement with 3D Radar

60.04

12 22

113

How much concrete cover is over the top layer of steel

Process GPR data using a known dielectric value

DPlot Results

Identify water trapped within roadways

Water trapped within the pavement due to a layer of impermeable clay

Pavement surface distress

