FDOT’S Experience with 3D RADAR

Bouzid Choubane, Florida Department of Transportation
Charles Holzschuher, Florida Department of Transportation
Guangming Wang, Florida Department of Transportation
Ken Maser, Infrasense, Inc.
Edward Offei, Applied Research Associates
Outline

• History
• Florida DOT GPR Experience
• GPR Applications
• FDOT Objectives of R06D IAP
• 3D RADAR Field Testing
• Lessons Learned
Historical Background

• Early 1980’s to Current
 – Thickness Determination (Pre-Design)
 – Density Study
 – Forensic Investigations (Sinkhole, Utilities)
 – Bridge Deck Evaluations (Rebar Depth, Deterioration Mapping)

• Equipment
 – Air-Launched GPR
 – Ground- Coupled GPR
 – Rolling Density Meter (PaveScan)
State of Florida

- 2018 Population: 20 million
 - 3rd most populous state in the US
- 94 million annual visitors
- State Highway System (FDOT Maintained)
 - 43,500 total lane miles
 - 12,000 centerline miles
Department’s Mission

• Ensure a safe transportation system
 – High Speed Non-Contact Technology
 – Support Design Initiatives
• Make data driven decisions
FDOT Goals

• Statewide Evaluation of In-service Roadways
 – Pavement Layer Thickness

• Pavement Forensic Investigations
 – Delamination/Premature Failure/Distress
 – Sinkholes/Voids
 – Utility Search
 – Buried Object Search
 – Density

• Bridge Forensic Investigations
 – Bridge Deck Deterioration Mapping
 – Bridge Rebar Cover

• Experimental Projects
 – New Materials
 – Construction Methods
FLORIDA’S GPR EXPERIENCE
FDOT Program Overview

• Based on Current GSSI GPR:
• Full Time Year Round Program
• 2,500 Lane Miles of Markings per Year (Project Level)
 – Pavement Layer thickness
• Forensic and Special Requests
 – Research, Safety, or District needs
 • Up to 50 Projects per year
Current GPR Limitations

- Single Frequency
- Limited Depth
 - Air-Launched GPR
- Not full lane coverage
- Site Specific – Ground Coupled GPR
 - Requires Maintenance of Traffic (MOT)
Sinkhole Investigation

- Pavement depression on SR 24 in Gainesville, FL
- Southbound Lanes
- Steel plate used to temporarily cover pavement depression
Bridge Deck Survey

- Bridge Number 940045
- SR A1A, Roadway Section 94060 (MP 0.330 to 0.719)
- Bridge Length = 2,054 ft.
- Bridge Width = 30 ft.
- Steel Grate from 1,314 ft. to 1,417 ft. from South End of Bridge (Excluded from Contour)
FDOT Objectives of R06D IAP

• Primary:
 – Detection of pavement delamination
 – 3D GPR Technology

• Secondary:
 – Detection of voids under concrete pavement
 – Detection of dowel bar alignment
 – Evaluation of density variations in new asphalt pavement
 – Identification and quantification of delamination in older bridge decks
 – Detection of voids over culverts, and sink holes
3D RADAR – Mounting Systems

- Mounting Systems:
 - Issues with existing mounting
 - Clutter problem not solved

GPR reflection interference (“clutter”) caused by vehicle proximity and mounting
3D RADAR – Mounting Systems

- Development of improved mounting
- FDOT: 4ft offset and 15in height
Antenna Mounting Observations

• “Clutter” is caused by reverberations from the pavement and nearby objects
• Some clutter is intrinsic to the antenna, and some is related to the mounting system and proximity to the vehicle.
• For most analyses, it will be necessary to do background removal starting just below the pavement surface, in order to effectively remove the clutter.
• Sometimes background removal takes away some of the real data
• Best approach is to mount the antenna in a way to minimize clutter
3D RADAR FIELD TEST
3D RADAR SYSTEM

- Evaluation of 17 In-service Roadways
 - Pavement
 - Bridges
3D RADAR Testing

- Testing at SMO Test Lanes:
 - Evaluation of first 150 feet of Lanes 3, 4, 5
3D RADAR Testing – FDOT SMO

- SMO Test Lane 3 – Debonding - Delamination

Lane 3 -3D Radar depth slice at 2”

North

metal tape

HVS loading location

Moisture infiltration

This section - Sand interface area (unbonded) – 1.4”
3D RADAR Testing

- SMO Test Lane 4 – Density

HVS loading locations
3D RADAR Testing

- SMO Test Lane 5 – Segregation

Lane 5 - depth slice at 1.5”

Temperature profile map
3D RADAR Testing

- Stripping and Moisture Damage
 - Interstate 10, Duval County, MP 0 – 8.989

Observed Distresses on I-10
3D Radar Testing – I-10

- Pavement consists of multiple layers
 - Friction course, 2 structural courses, ARMI layer
- Total thickness = 7 inches
- Seven cores taken at different areas
 - Four showed internal damage to the pavement structure
- Four lines of 3D Radar data were collected
 - Two in the travel lane in each direction
3D GPR Data at Core Locations on I-10

MP 6.163

Pavement surface

AC bottom layer reflection

= Areas of potential stripping

b)

b)

a)
Subsidence Study

- State 24 (Waldo Road) near Gainesville, FL
- Pavement depression experienced over the years near drainage inlet location
- FDOT 400 MHz GSSI system used initially
- Results compared to 3D Radar
- Similar comparison done for I-75 subsidence study
Subsidence Study

- 400 MHz GSSI System vs. 3D RADAR Results

Potential Shifting Soil

Potential Pipes

3D Radar
Subsidence Study – I-75

- L3 Test Location MP: 14.490 – 14.520

400 MHz

3D Radar
Subsurface Soil Stabilized Columns (SCC)

- Subsurface Soil Stabilized Columns (SCC)
 - SR 100, Putnam County, MP 7.000 – 8.000
 - Columns installed to mitigate roadway settlement

Area with installed Soil Stabilized Columns (SCC)
Subsurface Soil Stabilized Columns (SCC)

- Area with no SCC

![Diagram showing pavement surface, grout columns, bottom of AC, and bottom of SBRM.]

Gap in SCC pattern

File 010

File 012

Pavement surface

Grout columns

Bottom of AC

Bottom of SBRM
Detecting PCC under HMA

• Different types of concrete base (NB)
 – SR 5 (US 1) St. Johns County, 2-mile section, NB & SB
 – Detected location and type of concrete base
 – Identified area of extensive settlement
Detecting PCC under HMA

- SR 5 (US 1), St. Johns County, 2-mile section, NB & SB
 - Detected location and type of concrete base

55 ft. S. of Saragosa St Int.
70 ft. S of Orange St. Int.

Different types of concrete base (NB)
Detecting PCC under HMA

JCPC Joints at 15 feet

CRCP Transverse Rebar at 6 inches
Detecting PCC under HMA

- Area of pavement settlement (SB)

170 ft. N of Orange St. Int.

62 ft. S of Saragossa St. Int.

55 ft. S. of Saragosa St Int.

Asphalt Fill

JPCP CRCP JPCP
Dowel Bar Detection

- SR 5 (US 1) Volusia County, MP 9.600 – 11.500 (SB)
- White-topping thicknesses – 6”, 7” and 8”
- Specially designed with different dowel patterns:
 - 12 dowels spaced at 12” centers starting at 6” from pavement edge
 - 3 dowels in each wheelpath spaced at 12” centers beginning at 12” from each edge
 - No dowels
Dowel Bar Detection

- 3D RADAR Results
Dowel Bar Detection

- Dowel Bars – Position, Dimensions and Alignment
Bridge Deck Evaluation

• SR 816 Bridge, Broward County, 3 passes per lane
• Identify spans and structural changes between spans
• Locate rebar schedules in both directions
• Calculate rebar depth and areas of deck deterioration
Bridge Deck Evaluation

- Bridge Deck – Overview Slice
Bridge Deck Evaluation

Bridge Deck – B Scan

Bridge Deck – Depth Slice, Rebar Pattern
Bridge Deck Evaluation

- **Bridge Rebar Depth**

- **Bridge Deck Deterioration Condition**
Data Analysis Software

- ExploreGPR Software processes output of Examiner
- Provides data visualization, analysis, and reporting
Lessons Learned

• Subsurface conditions revealed via data visualization using Examiner
• Need to incorporate calibration files in order to accurately compute dielectric/density
• Quantitative data analysis using post-processing software, ExploreGPR
• Looking at return on Investment (ROI)
Questions/Comments