

Using SHRP2 Technologies to Achieve Success - California's Approach to Implementation

Barton Newton, State Bridge Engineer Caltrans

WASHTO. August 6, 2013

U.S. Department of Transportation
Federal Highway Administration

Role of California Department of Transportation

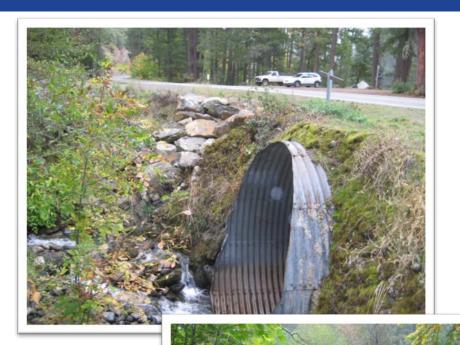
Lead Adopter for SHRP2 Renewal Solution

 Innovative Bridge Designs for Rapid Renewal

Innovative Bridge Designs: Economical Prefabrication of Bridges

- Standardized design concepts
- Small-to-medium sized bridges
- No special cranes or equipment needed
- Toolkit (R04) includes:
 - Standard design plans & details
 - Design examples
 - Design specifications
 - Construction specifications
 - Training materials

Bridge installation over Keg Creek, Iowa.

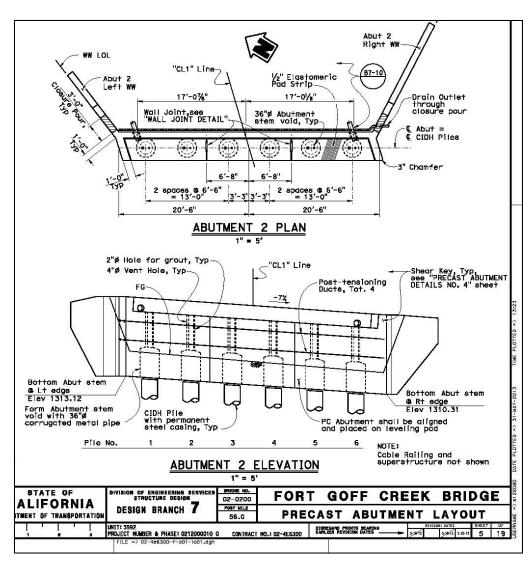

Implementation Assistance Criteria For Bridge Design Solutions

- Small- to medium-span structure
- Prefabricated Bridge Elements and Systems (PBES) identified as an appropriate construction method
- Let for construction by May 2014
- Repeatable techniques that could lead to standardized detailing
- No special equipment for construction needed

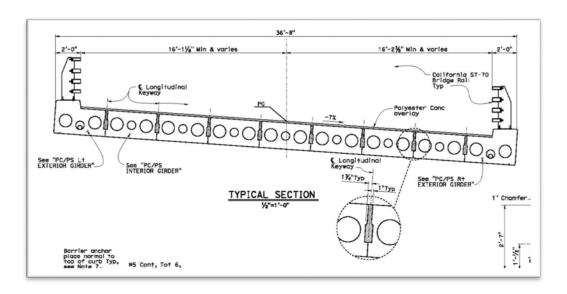
Fort Goff Creek Bridge

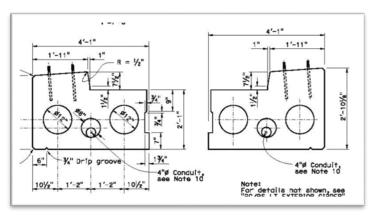
Fort Goff Creek Bridge

 Streambed restoration project to provide fish passage


 Replace 60-year-old culvert with 60' long single span bridge

 Temporary detour under one-way traffic control


Precast Substructure



- Single row of piles
- Repeatable elements
- Pick weight under 95K
- Pre-assemble substructure elements prior to shipping
- Fabrication tolerances in specifications

Precast Superstructure

- Repeatable elements (PC/PS Voided Slabs)
- Prefabricated bridge rail (California ST-70)
- Rail curb precast on exterior slab elements
- Construction sequence on plans

Innovative Bridge Design Applications in California

Emergency projects in which restoring traffic is a top priority. Time is everything. Projects with constraints that preclude conventional construction methods

I-580 Connector Span Replacement

SFOBB Yerba Buena Island Viaduct superstructure roll-in

Competitive Alternative to Conventional Methods

Craig Creek (PBES) 2011

Hardscrabble Creek (Roll-In) 2008

Standardize and Document

- Design and build pilot projects to work out issues of contract management, constructability, and cost efficient design detailing
- Use easily accessible details and guidelines
- Develop efficient and constructible quality designs
- Use them on a variety of projects: Single and multi-span structures

SHRP2 Value to California

- Goal: Mainstream ABC in California
- Time savings: Reduce the on site construction days
- Cost savings: Use standard designs for many bridges
- Minimize use of detours: Deliver projects more rapidly and less intrusively to our travelling public.
- Advance state of practice: Add to existing knowledge and experience using accelerated bridge construction
- Opportunity to share our experiences with other states

