Techniques to Fingerprint Construction Materials--R06B
XRF and FTIR Spectroscopy

Committee on Materials and Pavements
Cincinnati, OH
August 9, 2018
Techniques to Fingerprint Construction Materials (R06B)

Challenge
• Verify materials without sampling delays

Solution
• Technologies to verify specific construction materials in real time
• Technologies that can be used at the project site to determine specification compliance
Potential Benefits

- Rapid testing on site or in the lab
- Reduce testing time and cost
- Minimize noncompliance risk
X-Ray Fluorescence Spectroscopy (XRF)

- Rapid elemental analysis of materials
- Specific application developed in R06B—testing traffic paints for Ti content
XRF Advantages and Limitations

Advantages
- Pre-calibrated for wide range of elements
- Automatic reading—no analysis
- 1-3-minute testing time
- Little or no sample prep required
- No maintenance required
- Numerous applications

Limitations
- Requires user certification
- Upper and lower limits—different calibrations needed for trace metals vs. ores
Fourier Transform Infrared (FTIR)

- Identifies compounds
- Simple testing process
- Analysis more difficult than XRF
R06B—Maine

- **XRF**
 - Chlorides in bridge deck cores
 - Titanium in traffic paint
 - REOB in PG Binder
 - SS Rebar
 - Galvanized coating thickness
 - Glass Beads – lead, arsenic
 - Presence of RAS in HMA?

- **FTIR**
 - Polymer in PG Binder
 - Library of all Binders
 - Lime in HMA
R06B—Maine

Quantitative

Qualitative
Chloride Content – Bridge Deck Cores

• Current method: AASHTO T 260 (Gran Plot Method)
 – Requires nitric acid and silver nitrate
 – Numerous steps
 – 10 tests/day

• XRF method
 – No chemicals
 – 25+ tests/day
 – Less training required
Chloride Content – XRF method
- Split-sample comparison
 - Evaluated numerous binding agents for pelletized samples, XRF settings, direct measurement of concrete
 - Selected the settings that provided the best correlation on a limited amount of measurements vs. titration values
 - Expanded population of comparisons
 - In-progress statistical validation

<table>
<thead>
<tr>
<th>Item</th>
<th>Levels</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Mode</td>
<td>3</td>
<td>AllGeo and Two Mining Modes</td>
</tr>
<tr>
<td>Time Breakdown</td>
<td>2</td>
<td>5/5/5/45 & 15/15/15/15</td>
</tr>
<tr>
<td>Binding Agent</td>
<td>6</td>
<td>None and 5 recommended agents</td>
</tr>
<tr>
<td>Binding %</td>
<td>2</td>
<td>5% & 10%</td>
</tr>
<tr>
<td>Replicates</td>
<td>3</td>
<td>Three measurements on each pellet</td>
</tr>
</tbody>
</table>
Surface Testing of Core Slices

Top, bottom, edge of slice
Average of all readings v. Titration
$R^2 \approx 0.91$

- Exposed aggregate a problem
- Higher variability
Pulverized specimens

N = 282 samples

\[y = 0.9672x \]

\[R^2 = 0.9659 \]
Conclusions from study
- Pellets of pulverized material superior to surface readings of slices
- No binding agent required
- In process of:
 - testing lab-prepared reference samples
 - validating correlation with independent split-sample comparisons
Stainless steel rebar

<table>
<thead>
<tr>
<th>El</th>
<th>%</th>
<th>+/- 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.110</td>
<td>0.010</td>
</tr>
<tr>
<td>Cr</td>
<td>23.490</td>
<td>0.073</td>
</tr>
<tr>
<td>Mn</td>
<td>1.818</td>
<td>0.045</td>
</tr>
<tr>
<td>Fe</td>
<td>70.056</td>
<td>0.093</td>
</tr>
<tr>
<td>Co</td>
<td>0.123</td>
<td>0.045</td>
</tr>
<tr>
<td>Ni</td>
<td>3.758</td>
<td>0.044</td>
</tr>
<tr>
<td>Cu</td>
<td>0.347</td>
<td>0.014</td>
</tr>
<tr>
<td>Zr</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Nb</td>
<td>0.018</td>
<td>0.001</td>
</tr>
<tr>
<td>Mo</td>
<td>0.253</td>
<td>0.004</td>
</tr>
<tr>
<td>W</td>
<td>0.017</td>
<td>0.005</td>
</tr>
<tr>
<td>Pb</td>
<td>0.007</td>
<td>0.002</td>
</tr>
</tbody>
</table>
• XRF
 – Silica and Calcium Carbonate in Limestone
 – Titanium in Thermoplastic
 – Glass Beads – lead, arsenic
 – REOB in Binder?
 – Galvanized coating thickness?

• FTIR
 – Polymer in PG Binder
 – Library of all Binders
 – PPA in Binder
Heavy Metals in Glass Beads

• Current Practice:
 – Tennessee requires every lot to be tested with EPA tests 3052, 6010B, or 6010C.

• Future Method:
 – Perform XRF testing on every lot. Allow manufacturer to Certify lots to Federal Aid Standard.
Silica in Limestone

- Currently tested by standard-less program on WDXRF in Lab.

- Handheld can perform same testing but still requires a lot of sample prep to be accurate.
Titanium in Thermoplastic

• Current Practice:
 – Tennessee currently accepts thermoplastic on certification.

• Future Practice:
 – The handheld can perform verification testing in the field/lab on Thermoplastic.
 – There may be some issues with some fillers in the Thermoplastic.
Future for this Product in TN

- Looking into other materials
 - Following Maine and using XRF as a rapid test for Chloride Content of Bridge Decks.
 - Using the XRF and FTIR to detect REOB’s and PPA’s in our Binders.
 - Using the FTIR to verify Qualified Products List materials, such as Texture Coating and Additives for Asphalt and Concrete.
What’s Next for R06B

The Future

- Webinar - August 22, 2018
- Peer Exchange - September 26-27, 2018
 - https://fs6.forms site.com/Mrussell/form204/index.html
- Regional User Producer Group Meetings?
- Others?
Contacts
Kate Kurgan
AASHTO Product Lead
kkurgan@aashto.org

Steve Cooper
FHWA Product Lead
stephen.j.cooper@dot.gov

Maria Chrysochoou
Subject Matter Expert
maria.chrysochoou@uconn.edu

Terry Arnold
Technical Expert
terry.Arnold@dot.gov

Additional Resources:
GoSHRP2 Website:
fhwa.dot.gov/GoSHRP2

AASHTO SHRP2 Website:
http://shrp2.transportation.org

R06B Product Page
Coming soon