Expanding Use of Drones in the Railroad Environment

Community of Interest Webinar for Railroad-DOT Mitigation Strategies (R16)

August 8, 2018
Purpose of Today’s Webinar

- **Learn more** about the SHRP2 R16 Railroad-DOT Mitigations Strategies Community of Interest and its Innovation Library.
- **Hear presentations** from Utah DOT and BNSF regarding the increasing uses and value of Unmanned Aircraft Systems (Drones) to promote safety and efficiency in the Railroad Environment.
- **Discuss and ask questions** in a robust exchange with presenters and participants.
Agenda

- Welcome
- Presentations:
 - Unmanned Aerial Systems, Utah DOT
 - BNSF Railway UAS Program, BNSF
- Discussion and Comments
A Few Housekeeping Details

• **Tell us what you think.** We want to hear from all of you on the call during the discussion segment.

• **Please add your comments to the chat box provided.**
Welcome

Presenters
- Paul Wheeler, Lead UAS Coordinator, Utah DOT
- Todd Graetz, Director of Technology Services, BNSF

Moderators/Participants
- Kate Kurgan, Moderator/ R16 Product Lead, AASHTO
- Pam Hutton, SHRP2 Implementation Manager, AASHTO
- David Solow, R16 Subject Matter Expert

Transcript of the presentation will be posted on the AASHTO SHRP2 website: http://shrp2.transportation.org/Pages/R16_RailroadDOTMitigationStrategies.aspx
Focus Areas

Safety: fostering safer driving through analysis of driver, roadway, and vehicle factors in crashes, near crashes, and ordinary driving

Reliability: reducing congestion and creating more predictable travel times through better operations

Capacity: planning and designing a highway system that offers minimum disruption and meets the environmental and economic needs of the community

Renewal: rapid maintenance and repair of the deteriorating infrastructure using already-available resources, innovations, and technologies
SHRP2 Implementation: INNOVATE. IMPLEMENT. IMPROVE

$155 million

FUNDING ASSISTANCE

63

SHRP2 SOLUTIONS

430+

PROJECTS IMPLEMENTED

DOT
52 Recipients

MPO/LOCAL
30 Recipients

UNIVERSITY
12 Recipients

FEDERAL/TRIBAL
7 Recipients

- RENEWAL
 230+

- CAPACITY
 100+

- RELIABILITY
 90+

- SAFETY
 11
SHRP2 Implementation:
INNOVATE. IMPLEMENT. IMPROVE

RESULTS
Save lives, money, and time
- Bridges being built more quickly
- Smoother traffic flows and less congestion
- Reduced construction costs
- Safer roadways
- Smarter environmental reviews
What is SHRP2 R16?

• Active Strategic Community of Interest (COI)
• Strategies to Improve Railroad-DOT Cooperation and Accelerate Project Delivery
• Innovation Library
 http://shrp2.transportation.org/Pages/R16_InnovationLibrary.Topic.aspx
• AASHTO Web Page Resources:
 http://shrp2.transportation.org/Pages/R16_RailroadDOTMitigationStrategies.aspx
Unmanned Aerial Systems (UAS) Program
2010 Testing in coordination with Utah State University
- Southern Parkway Construction Monitoring
- Wetland Plant Species Classification

Implementation Stages

• January 2016 Started Section 333 Process
• Purchased 3 Aircraft June 2016
• Policy and Procedures Approved March 2017
• 2018 - 9 Remote Pilots
UAS Platform Utilization

Structure Inspection

- Delamination (Thermal)
- Mapping
- Inspection

- Increase Frequency
- Improved Documentation
- Supplement
Site Monitoring

- Live Streaming Capabilities
- Monitor Area
- Bird’s Eye View at Low Cost

- Route Management
- Quick Response vs. Traditional Aircraft
Land Surveying

- Highly Detailed Mapping Model
- Safety
- Speed of Collection
- High Resolution Aerial Imagery with Point Cloud
Verification Report

- Required on all Pre-Construction Surveys
 - Softscape Surfaces
 - Hardscape Surfaces

- Hybrid Model

71	1151	3748.06	113741.25	579386.58	3788.06	0.60
72	1152	3787.84	113741.41	579375.89	3787.90	0.05
73	1154	3787.57	113720.26	572355.68	3787.70	0.13
74	1155	3787.33	113708.19	572340.25	3787.34	0.00
75	1156	3787.29	113700.01	572336.63	3787.26	-0.03
76	1164	3786.48	113648.18	572278.96	3786.47	-0.02
77	1165	3786.46	113648.67	572264.49	3786.44	-0.03
78	1166	3786.36	113632.86	572253.64	3786.29	-0.07
79	1167	3786.24	113621.83	572236.72	3786.23	-0.01
80	1174	3785.55	113559.50	572107.23	3785.65	0.10
81	1175	3785.56	113563.69	572154.37	3785.62	0.05
82	1176	3785.51	113552.82	572149.52	3785.48	-0.03
83	1177	3785.42	113559.87	572140.59	3785.37	-0.05
84	1179	3785.37	113519.68	572114.83	3785.27	0.01
85	1180	3785.30	113519.12	572105.96	3785.29	0.09
86	1181	3785.15	113525.44	572099.48	3785.24	0.09

- Number Chk Pts: 81
- Mean Error (US): 0.03
- Standard Deviation (US): 0.04
- FNME (US): 0.04
- H ASK (US): Combined Horizontal FNME
- V ASK (US): 0.08
Construction – SR20

- First Project for 3D Model as Legal Document
- Attribute based Model
- Phasing/Changes Over Time
- Used by Construction & Inspection

- Compared against original design
- Hybrid Data
 - GPS, UAS, LiDAR, Design
 - As-Built Model
SR20 – Project Outcomes

- Overall savings for this project was $82,672 (2.58%)
- Workforce was 45% more productive
- Completed 25 days ahead of schedule
Environmental

- Google Earth High Resolution Imagery
- Wetland Mitigation – Jordan River
- Galena Canal – Hot Spring
- Monitor Noxious Weed Removal
UAS Platform Utilization

Incident Management

- UAS for IMT Vehicles
- Accident Reconstruction
- Monitoring Alternative Routes
- Real Time Broadcasting
- Detour management
- Search and Rescue
Airport Inspection

- Pavement Condition
- Automated Crack Detection
- Obstacle Clearance
Landslides

Moki Dugway
Landslides

Moki Dugway
UAS Platform Utilization

Asset Management

- Detailed Aerial Imagery
- Automated Detection
Data & Storage

- Plan for large data sets
- Keep all flight logs, files, and processed data.
- GIS database for all Ortho Imagery.
 - https://uplan.maps.arcgis.com/home/webmap/viewer.html?webmap=dc81b7cbd5ce4f8fba086e05d723fff
Lessons Learned

- Understand radio link characteristics in multiple environments
- Battery life and endurance
- Plan for the worst, hope for the best
- Looks can be deceiving
- Initial test flight to scout for obstacles and heights prior to autonomous flight mapping.
- Use aviation radio to monitor traffic
- Establish good relationships with other entities and public.
- Use visual observers for operations
- Sterile environment for Pilot
Contact Info:

Paul Wheeler
Lead UAS Coordinator
E-mail: pwheeler@utah.gov
Phone: 801-965-4700
Questions?
For More Information

Product Leads:
- **Jessica Rich**
 FHWA Product Lead
 jessica.rich@dot.gov
- **Pam Hutton**
 AASHTO Co-Product Lead
 phutton@aashto.org
- **Kate Kurgan**
 AASHTO Co-Product Lead
 kkurgan@aashto.org
- **Hal Lindsey**
 R16 Project Manager, CH2M/Jacobs
 hal.lindsey@jacobs.com

Additional Resources:
- **GoSHRP2**
 Website:
 fhwa.dot.gov/GoSHRP2
- **AASHTO SHRP2**
 Website:
 http://shrp2.transportation.org
- **R16 Product Pages**
 http://shrp2.transportation.org/Pages/R16_RailroadDOTMitigationStrategies.aspx
- **Innovation Library**
 http://shrp2.transportation.org/Pages/R16_InnovationLibrary.aspx
Thank You for Joining Us!