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ABSTRACT 

 

This study used data from the RID and NDS to study driver performance associated with 

different alignment combinations.  The study included the development of an algorithm that used 

the RID to identify vertical curves.  This algorithm was also validated using ground-truth data 

from Washington.  The analysis of the NDS data included performance measures related to 

speed and lane deviation.  The analysis of the NDS data showed that the alignment categories 

that include a horizontal curve have the worst performance in terms of the lane deviation 

measures.  In addition, sharper horizontal curves are associated with the higher absolute values 

of lane deviation.  The analysis was conducted using both disaggregate and aggregate methods.  

Comparison of the CMFs from Bauer and Harwood (2014) with the performance measures 

indicates a good match with the lane deviation measures, indicating that the lane deviation 

measures could serve as good surrogates for crash propensity.   

 

BACKGROUND AND MOTIVATION 

 

Many studies have shown that on rural roads, horizontal and vertical curves and grades are 

associated with more crashes compared to tangent level sections.  A common crash type under 

these conditions is a lane departure crash.  For many states, including North Carolina, lane 

departure crashes are of very high priority.  In fact, Chapter 10 of the 1
st
 edition of the Highway 

Safety Manual (HSM) provides crash modification factors (CMFs) for horizontal curvature and 

grade on rural two lane roads.  However, the HSM treats horizontal and vertical alignment as 

independent entities assuming that there is no interaction between them.  Recent work sponsored 

by the Federal Highway Administration (FHWA) as part of the Highway Safety Information 

Systems (HSIS) effort investigated the safety effects of horizontal curve and grade combinations 

on two lane roads using roadway and crash data from the state of Washington (Bauer and 

Harwood, 2014).  As part of their effort, Bauer and Harwood (2014) conducted a review of the 

design criteria in the AASHTO Policy on Geometric Design of Highways and Streets 

(AASHTO, 2011) (also called the green book), and previous studies that had tried to estimate 

CMFs for horizontal and vertical curves.  For horizontal curves, the primary design parameters 

are radius (R) (lower values imply sharper horizontal curves), length of the horizontal curve (Lc), 

superelevation, and transition design.  For vertical grades, grade (G) is the primary design 

parameter.  Vertical curves occur when the grade changes and usually involves a parabolic curve 

that joins two sections of different grade (say, G1 and G2).  For vertical curves, the primary 

design parameters include the difference in grade between the two sections (i.e., abs(G1 – G2)), 

length of the vertical curve (Lv), and the ratio of the length of the vertical curve to the algebraic 

difference between the grades, which is a measure of the sharpness of the vertical curve (K) 

(lower K values imply sharper vertical curves).  Figure 1 shows the different types of vertical 

curves discussed in the AASHTO green book. 

Bauer and Harwood (2014) estimated crash modification functions for property damage 

only (PDO) and injury and fatal (FI) crashes for the following situations: 

 Horizontal curves and tangents on straight grades 

 Horizontal curves and tangents at type 1 crest vertical curves 

 Horizontal curves and tangents at type 1 sag vertical curves 

 Horizontal curves and tangents at type 2 crest vertical curves 
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 Horizontal curves and tangents at type 2 sag vertical curves 

Although CMFs provide valuable information about the safety risk associated with 

different roadway characteristics and traffic control devices, they do not necessarily provide 

insight into why certain conditions are higher risk.  Data from naturalistic driving studies would 

be able to provide this insight that studies based only on crash data cannot easily provide.  This 

research is expected to provide valuable information about how drivers interact with roadways 

under various combinations of vertical and horizontal alignment. 

 

STUDY OBJECTIVES 

 

The overall goal of this effort was to examine driver performance under different combinations 

of horizontal and vertical alignment and determine countermeasures that may be effective in 

reducing crashes at these locations.  The primary aim of Phase 1 was to determine whether useful 

data and results can be produced in this effort and if further work is likely to provide insights into 

crash causality or countermeasures effectiveness.  In Phase 1, the intent was to obtain sample 

data from sites with different combinations of horizontal and vertical alignment and determine if 

certain combinations are associated with better or worse driving performance.  Another objective 

was to compare the performance measures with the CMFs that were estimated from Bauer and 

Harwood (2014), with the intent of obtaining insight into the reliability of these surrogate 

performance measures in the context of predicting crash propensity.  The primary performance 

measures are related to speed and lane position, and combinations of these two measures.  Phase 

2 is intended to examine driver performance associated with different countermeasures and 

roadway features that could not be examined in Phase 1, and identify potential countermeasures. 

 

OVERVIEW OF METHODOLOGY AND APPROACH 

 

The following tasks provide an overview of the methodology that was adopted for this study: 

1. Literature Review and IRB Approval.  Apart from reviewing the crash based studies on 

this topic, the review also included studies that used Naturalistic Driving Study (NDS) 

type data in the past including Hallmark et al., (2014), Gordon et al., (2013), Davis and 

Hourdos (2012), and Jovanis et al., (2012).  The intent of this review was to obtain 

insight into the methods that have been used to analyze NDS type data and the 

performance measures that have been used as surrogates for crash propensity.  Hallmark 

et al., (2014), was especially useful because it dealt with a closely related topic (lane 

departures on rural two lane roads).  The other three references provided useful 

information about modeling approaches that could be used with the NDS data.  While 

conducting the literature review, the UNC project team had the study design approved by 

the UNC institutional review board (IRB). 

2. Identify Study Sites.  Since the intent of the study was to examine horizontal and vertical 

curves, it was important to identify segments tangent sections, straight grades, horizontal 

curves, vertical curves, and combinations.  The roadway information database (RID) was 

used to identify the sites.  The next section provides more details regarding the process 

that was undertaken to identify the study sites. 

3. Obtain time series and forward video data.  The time series data included the kinematics 

variables such as speed, acceleration, lane position, distance from left and right lane 

markings, and steering wheel position.  The forward video provided the driver’s 
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viewpoint.  The forward video was used to record events such as presence of lead 

vehicle, presence of vehicle in the opposing vehicle, and other intrusions from vehicles 

and other road users. 

4. Obtain eye glance and secondary task data.  The eye glance data provided information on 

where a driver was looking every fraction of a second.  The UNC team was interested in 

the relationship between eye glance and the driver performance data.  The secondary task 

summary provided information on what other activities drivers were involved in apart 

from driving. 

5. Data reduction and analysis.  The intent of this task was to examine the relationship 

between driver performance, alignment characteristics, and CMFs from Bauer and 

Harwood (2014). 

6. Results and Conclusions.  Develop a final report based on the findings 

 

Tasks 2 through 6 are discussed further below.  Following the discussion of results from Phase 1, 

the Phase 2 Research Plan and Proposal are presented. 

 

 
Figure 1: Types of Vertical Curves (Bauer and Harwood, 2014) 
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IDENTIFY STUDY SITES 

 

The site selection included the following steps: 

 

1. Select routes 

 

The RID spatial files were used to select potential routes (before obtaining the RID, the UNC 

team signed a terms of use agreement with Iowa State University outlining the scope of the 

project).  In identifying the routes, the following selection criteria were considered: 

 Two-lane roads (critical) – The preliminary selection of two-lane roads was done using 

the “Lanes” layer from the RID.  However, it was necessary to further refine that 

selection from aerial image inspection due to the fact that the RID provides through lanes 

in both directions for undivided roads but separately in each direction for divided roads. 

Thus, a screening for “Number of lanes = 2” would select two-lane undivided roads and 

four-lane divided roads. The UNC team spot checked the selected routes by viewing 

aerial photography to verify that the road was actually a two-lane road. However, it was 

discovered later that some routes changed cross-sections from two-lane to four-lane at 

various places that were not detected in the visual inspection. Thus, some of the NDS 

data collected was for multilane roads, and was not used in the analysis. Based on this 

experience, future identification of two-lane roads in Phase 2 will not rely on the number 

of through lanes from the “Lanes” layer, but will rather focus on other variables present 

in the RID, such as the directional lanes values in the “Links” layer. 

 Rural area type (critical) – Rural areas were loosely defined as areas that appeared to be 

largely outside of semi-dense suburban development. This was assessed through a visual 

assessment of the road network as well as subsequent aerial image inspection. Routes 

were chosen that fit this criterion. 

 Moderately high number of trips (preferred) – To maximize the efficiency of the NDS 

data collection, the UNC team sought to identify roads that had more than a minimal 

number of trips. This was accomplished through referencing the trip density maps 

provided on the NDS InSight website. The UNC team selected routes that had at least 20 

trips. 

 Promising amount of vertical and horizontal curvature (preferred) – Since the focus 

of this study is on curvature, the UNC team wanted to ensure that potential routes would 

have a fair potential for both horizontal and vertical curvature. Following a conversation 

with Iowa State University, the UNC team began by focusing on the RID data from New 

York and Pennsylvania, since these were assumed to have the greatest number of curves 

on rural roads. Routes that appeared to have a relatively high amount of horizontal 

curvature (based on the RID “Alignment” layer) and vertical grade variation (based on 

the RID “Location” layer) were prioritized in the selection. At this stage, it was not yet 

possible to determine which routes had vertical curves. 

 

Based on these criteria, the UNC team selected four “routes” (as defined by RouteID in the 

RID): 
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 New York, Route 132 (21 total miles) 

 Pennsylvania, Route 587, (24 total miles)  

 Pennsylvania, Route 779 (3.6 total miles) 

 Pennsylvania, Route 914 (23 total miles) 

 

2. Identify sections of interest based on alignment data 

 

Once the potential routes were identified, alignment files were developed for each route to 

indicate the beginning and ending points of horizontal or vertical curvature along the route. This 

information was used to dynamically segment the route into unique sections representing 

combinations such as “Vertical crest curve on horizontal tangent” or “Vertical sag curve on 

horizontal curve”. These sections would later serve as the unit of analysis when NDS driver 

behavior data were obtained.  For this step, the UNC team developed a method to identify 

vertical curves. The method and its development are described below. 

 

Method to Identify Vertical Curves 

The topic of this study required the identification of the presence and location of both horizontal 

and vertical curves along the selected routes. Determining the start and end points of horizontal 

curves was straightforward. The “Alignment” layer of the RID is segmented into horizontal 

tangents and curves. Basic curve attributes are also provided, such as curve radius. However, 

determining the start and end points of vertical curves was challenging.  

There was a need for a method to assess the grade data to determine the location and 

extent of vertical curves. This was not a straightforward task, since the RID does not explicitly 

define vertical curvature in the data. Rather, it provides grade data (in percent) approximately 

every 25 feet, collected by an instrumented vehicle which drove all roads in the study area. It 

was necessary to develop a method for extracting vertical curve information from the grade data. 

The basic approach taken to assessing the grade data for identifying vertical curves was to 

conduct a “sliding window” analysis. This approach would begin with the first segment of the 

route and evaluate the group of adjacent grades within a certain designated window distance to 

determine if the trend of the values indicated that a vertical curve had been encountered.  After 

each evaluation, the window would slide down the road by one grade section (in the direction of 

increasing mileposts) and the evaluation would be repeated until the end of the route was 

reached. 

The team first attempted a method to identify vertical curves using a difference in 

average grades. This method compares the average of all grades in a window distance upstream 

of the segment of interest to the average of all grades in a window downstream of the segment of 

interest. If the difference in the two grades exceeds a designated threshold amount, then the 

segment of interest is determined to lie within a vertical curve. Adjacent curve sections are later 

grouped as a distinct curve. However, initial assessments of the method showed some issues 

when attempting to identify both short (sharp) vertical curves and long (flat) curves on the same 

route. Over the same distance in length, long curves have less change in grade than sharp curves, 

making it difficult to select a grade difference threshold that will evaluate both correctly. Any 

particular threshold value would underestimate the length of long curves but overestimate the 

length of sharp curves. 

A second method was developed out of a desire to address the main drawback with the 

first method. That is, a method was needed that could equally assess and identify both sharp and 
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flat curves. The answer to this need was found in the common design standards used for all 

vertical curves. The similarity in sharp and flat curves is that they both follow a parabola (or 

similar curve within some tolerance for deviations in construction and/or older curve designs). 

Mathematically, the first derivative of a parabola is a straight line (Equation 2). If the derivative 

of the roadway curve could be compared to a straight line, it would be possible to determine how 

similar the curve is to a parabola. 

y = ax
2
 + bx + c        (Equation 1) 

y’ = 2ax + b         (Equation 2) 

Conveniently, the RID provides the first derivative of the roadway curve by providing the 

grade at every 25 to 30 foot interval. If the road were exactly constructed as a perfect parabola 

(and the grade data were perfectly collected), the trend of the grade values would be a straight 

line. Thus, this method examines the trend of the grade values within a window distance of the 

segment of interest and calculates a correlation value that reflects the degree to which the grades 

form a linear trend.  The higher the correlation value, it is more likely that the segment of interest 

lies within a vertical curve (i.e., a parabolic group). A correlation value of 1.0 would reflect a 

straight line. Even for curves that are not parabolic (e.g., a constant radius circular arc), the trend 

of the grades is fairly close to a straight line. Setting a correlation threshold to a value somewhat 

less than 1.0 allows for tolerances in the noise of the data or variations in real-world 

construction. 

This method calculates a linear correlation value for the grades of all segments within a 

designated window distance downstream and upstream of the segment of interest. A linear 

correlation value is calculated for the grade values captured in the windows. If the trend of the 

grades is linear within a certain tolerance (linear correlation threshold, such as 0.9), the segment 

is deemed to be within a vertical curve. TABLE 1 uses an excerpt of actual RID grade values to 

demonstrate the second method.  It uses an example threshold of 0.9 for the linear correlation 

and a window consisting of six segments downstream and upstream. 

The user-specified parameters of this method are: 1) the value of the linear correlation 

threshold, and 2) the number of segments to use as the window distance upstream and 

downstream of the segment of interest. In order to calibrate these parameters (i.e., find the best 

values to use for identifying vertical curves) a comparison to a real world dataset was critical.  

Since state of Washington maintains an inventory of vertical curves as part of their roadway 

inventory files, one of the routes from Washington (40-mile portion of US 2 containing 37 

vertical curves), was selected as the real work dataset for evaluating the method.  The 

quantitative assessment of the methods was done using counts of false positives and false 

negatives. If a method indicated that a segment was not in a curve, when ground truth indicated 

that it was, this represented a false negative. Conversely, if a method indicated that a segment 

was in a curve when ground truth indicated that it was not, this represented a false positive. 

These false positives and negatives were summed across the entire 40 mile test route to 

determine how well the methods compared to ground truth. The linear correlation threshold 

parameter was adjusted in a trial-and-error fashion to hone in on the optimal value (lowest 

resulting counts of false positives and negatives). This revealed that a linear correlation of 0.9 

performed best.  Further discussion of the ground truth validation method and the findings is 

available in a paper that is under review for possible presentation at the 2016 TRB Annual 

Meeting. 
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Identify Segments 

Once the segments of each route were classified into horizontal and vertical curves or tangents, 

the team selected certain segments from each route. This selection was targeted at sections that 

occurred on vertical and horizontal curves, but also included segments that occurred on 

horizontal tangents or vertical straight grades in order to serve as a baseline comparison. The 

selected segments comprised a total of a little over 6 miles, in the following breakdown: 

 New York, Route 132 (3.08 miles selected) 

 Pennsylvania, Route 587, (1.3 miles selected)  

 Pennsylvania, Route 779 (0.95 miles selected) 

 Pennsylvania, Route 914 (0.85 miles selected) 

 

Data Use Agreement with VTTI 

During this task, the UNC team also negotiated a data use agreement with VTTI.  The agreement 

discussed the scope of the research study including the objectives, the data elements that are 

requested, sample size (i.e., number of trips), who will be compiling the data including 

information that potential personal identifiers (e.g., eye glance information), how long the data 

should be kept at UNC after the completion of the study, and a copy of the UNC IRB 

application.  This agreement was later modified to obtain vehicle width data and driver 

demographics data. 

 

TABLE 1 Example of Linear Correlation Method Using a 0.9 Correlation 

Threshold 

Segment ID Segment Grade Linear Correlation 

Using Six Segment 

Window 

Segment is in Vertical 

Curve (Correlation 

Meets Threshold)? 

1 -1.2 0.243 No 

2 -1.4 0.280 No 

3 -1.4 0.512 No 

4 -1.3 0.773 No 

5 -1.0 0.888 No 

6 -1.4 0.882 No 

7 -1.6 0.881 No 

8 -1.5 0.906 Yes 

9 -1.7 0.947 Yes 

10 -1.9 0.976 Yes 

11 -2.0 0.986 Yes 

12 -2.4 0.984 Yes 

 

 

3. Send LINK IDs to VTTI to Obtain NDS Data 

 

Throughout Steps 1 and 2, the team worked with the curve and grade files from the RID 

(Alignment and Location). However, the NDS data maintained by VTTI is stored on the basis of 

LinkIDs as defined in the Links layer of the RID. Thus, based on the selection of road segments 

in Step 2, the team identified the corresponding links by LinkID in the Links layer. This 



9 

 

compilation of LinkIDs was submitted to VTTI as the basis of the request for the driver behavior 

data from the NDS. 

 

OBTAIN TIME SERIES AND FORWARD VIDEO DATA 

 

For each study site that was provided to VTTI, VTTI provided a list of trips that traversed these 

sites.  The information provided for each trip included trip id, participant id, time of day, 

duration of the trip, the sequence of LinkIDs in the trip, number of crashes, and number of near 

crashes in the trip.  None of the trips had any crashes or near crashes.  From this list, VTTI asked 

UNC to randomly select trips for which the time series, eye glance, and secondary task data 

would be extracted.  Based on the data use agreement with VTTI, a total of 1250 LinkID-trips 

were selected. 

After the trips were selected and provided to VTTI, VTTI provided the time series data 

and the forward video in two batches: one in June 2015 and the second in July 2015.  The time 

series data included the kinematics variables such as speed, lane position offset, distance to edge 

and centerlines, heading, acceleration, steering, latitude, and longitude. 

The forward video was used to determine the presence of lead vehicles, vehicles in the 

opposing lane approaching the subject vehicle, weather conditions, lighting/time of day, 

construction and maintenance, and intrusions from vehicles and other road users.  Lead vehicles 

within a 3 second headway in front of the subject was assumed to affect the speed of the subject 

vehicle, and hence, timestamps associated with this time period was noted.  Similarly, vehicles in 

the opposing lane were assumed to affect the lane position of the vehicle for about 2 seconds 

before it passed the subject vehicle. 

 

OBTAIN EYE GLANCE AND SECONDARY TASK DATA 

 

VTTI provided the eye glance and secondary task data in August 2015.  The eye glance data 

provided information on whether the driver was looking forward into the roadway, rear view or 

side mirrors, or inside the vehicle, including passenger, interior object, cell phones, windshield, 

etc.  In addition, there was also an indication on whether the driver’s eye glance was in 

transition.  In some cases, the eye glance data were not available because of glare or when 

drivers were using sunglasses. 

 The secondary task information was provided as summaries for each LinkID for each 

trip.  The secondary task file included information on the activities that drivers were doing apart 

from driving.  The main purpose for requesting this information was to determine if the analysis 

should look at drivers that were not involved in secondary tasks apart from the driving task.  A 

review of the secondary task file indicated that in over 65% of trips, drivers were involved in 

other activities in addition to the driving task.  Hence, analysis using just the drivers without any 

secondary tasks would have been based on a very small sample, and probably not very useful.  

Consequently, the secondary task file was not used further in the analysis. 

 

DATA REDUCTION 

 

The first step in the data reduction was to combine the time series data, eye glance data, and the 

data that were coded from the forward video.  During this process, it was found that for some of 

the trips, the start and end timestamps of the time series data were significantly different from the 
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start and end timestamps of the eye glance data.  VTTI indicated that this match was due to 

“errored export” and happened due to “different portions of the same file being exported as part 

of the process”.  VTTI provided the corrected time series data for the affected trips on September 

11, 2015, allowing the UNC team to proceed with further data reduction and analysis.  VTTI also 

assured the UNC team that this error is not a common occurrence and has been resolved.  They 

also indicated that there was no reason to believe that this issue affected the other trips where 

there was a good match between the timestamps of the eye glance data and the times series data. 

 Merging the time series, eye glance, and coded data from the forward video presented a 

few other challenges as well.  The time series data were provided at a frequency of 10 Hz (every 

0.1 second).  However, the eye glance data and the coded data from the forward video were 

available more frequently, i.e., every 0.066 or 0.067 seconds.  The UNC team wrote a computer 

program to combine the different data sets together to match the frequency in the time series 

data.  Before analyzing the data, some observations had to be removed due to the following 

reasons: 

 As mentioned earlier, some of the segments were multilane roads instead of two-lane 

roads. 

 The lane position data were either missing or incorrect, e.g., there were a series of 

observations where the distance to the right side and left side lane markings from the 

center of vehicle were both zero for the same observation. 

 The latitude and longitude information was missing for some observations.  Since UNC 

provided VTTI with LinkIDs in order to extract the NDS data, and these LinkIDs often 

included multiple tangent sections and curves, without latitude and longitude, it was not 

possible to link the time series data with specific curves or tangents. 

 

ANALYSIS AND RESULTS 

 

As discussed earlier, the intent of the analysis was to determine the relationship between 

alignment and driver performance.  The performance measures that we investigated included 

mean speed, speed variance, mean absolute value of the lane deviation (defined as the absolute 

value of the distance between the center of vehicle and the center of the lane), variance of lane 

deviation, probability of lane encroachments (i.e., probability that any part of a vehicle was 

outside the lane on either side), and mean absolute value of lateral acceleration.  The analysis 

included both disaggregate (i.e., including data from each timestamp) and aggregate where the 

data were aggregated over homogenous segments (based on alignment) for each driver and trip.  

The disaggregate analysis included linear regression for mean speed, mean absolute value of the 

lane position, and mean absolute value of lateral acceleration.  Probability of lane encroachments 

was investigated using logistic regression.  The independent variables included alignment 

category, presence of a lead vehicle, presence of a vehicle in the opposing lane, weather 

conditions, time of day category, driver’s glance location, age category, and gender.  In some 

cases, models were estimated after eliminating outliers based on the Cook’s distance (Cook’s D) 

criterion (Cook, 1979).  For the models that used the lane deviation information, only those 

observations where the lane marker probability value for the left and right lane marking was 

greater than or equal to 512
1
 was used. 

                                                 
1
 This parameter has a maximum value of 1024 and based on Hallmark et al., (2014), a cutoff value of 512 was 

chosen. 
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 For the disaggregate analysis, a fixed effects model was estimated by including 

individual specific indicator variables for each driver to account for serial correlation due to 

repeated measures from each driver.  A more sophisticated analysis approach would have been 

use time series analysis methods to account for correlation between observations from the same 

driver.  However, that proved to be a bit challenging because of the gaps in the data that were 

introduced due to removing parts of the data due to errors and missing information.  We plan to 

investigate time series analysis methods if funding for Phase 2 becomes available.  All the 

models were estimated using PROC GENMOD in SAS by maximizing log-likelihood 

estimation. 

 In the aggregate analysis, for each homogenous segment, a CMF was calculated using 

the equations from Bauer and Harwood (2014), to compare them to the performance measures 

for that segment.  The intent of this comparison was not to necessarily validate the CMFs from 

Bauer and Harwood (2014), but to obtain insight into the relationship between performance 

measures and crash propensity. 

 Overall, data were available for 85 drivers that took 317 trips.  42% of drivers in the 

sample were female and 56% were male.  About 29% of the drivers were younger than 30, 43% 

were between 30 and 64 years old, and 26% were 65 years or older.  Gender and age was 

missing for a couple of drivers. 

 

Results from Disaggregate Analysis 

 

Results from some the disaggregate analysis are shown below in Tables 2 and 3.  These models 

were based on about 60,000 observations.  For brevity, only the parameter estimates for the 

alignment related variables from the models are shown in the tables.  The following 

abbreviations are used to describe the different alignment categories: 

 Flat tangent (reference level) 

 Grade: Straight grade without horizontal or vertical curve 

 HC_C1: Horizontal curve and Crest 1 vertical curve 

 HC_C2: Horizontal curve and Crest 2 vertical curve 

 HC_S1: Horizontal curve and Sag 1 vertical curve 

 HC_S2: Horizontal curve and Sag 2 vertical curve 

 HC_STR: Horizontal curve without any vertical curve (includes curves with and without 

straight grades) 

 HT_C1: Tangent and Crest 1 vertical curve 

 HT_C2: Tangent and Crest 2 vertical curve 

 HT_S1: Tangent with Sag1 vertical curve 

 HT_S2: Tangent with Sag 2 vertical 

 

Linear Regression with Absolute Value of Lane Deviation 

 

TABLE 2 shows the results of the linear regression model that was estimated for the absolute 

value of lane deviation.  Lane deviation is the distance between the center of the lane and the 

center of the vehicle, and is measured in centimeters.  A positive coefficient implies that 

compared to a flat tangent section, vehicles were driven farther away from the center of lane.  

Similarly, a negative coefficient implies that compared to a flat tangent section, vehicles were 

driven closer to the center of lane.  Assuming that driving closer to the center of the lane is 
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associated with safer driving behavior, all the alignment categories with horizontal curves do 

worse compared to flat tangents with and without vertical curves.  At the same time, surprisingly, 

tangents with crest 2 and sag curves seem to be doing better compared to flat tangent sections.  

Models estimated using the absolute value of the lateral acceleration were very similar to the 

lane position models, and hence, are not shown here. 

 

TABLE 2: Results for absolute value of lane deviation 

Variable Estimate Standard Error 

Intercept 13.8732 0.8621 

Flat Tangent ---- ------ 

Grade -1.0742 0.2457 

HC_C1 3.7402 0.4784 

HC_C2 2.8922 0.8072 

HC_S1 4.9875 0.4732 

HC_S2 0.7109* 1.0648 

HC_STR 6.9464 0.2506 

HT_C1 -0.2276* 0.3513 

HT_C2 -3.6833 0.6885 

HT_S1 -1.8173 0.3067 

HT_S2 -2.1768 0.4274 

Note: *Not statistically significant at the 0.05 level.  Only the alignment variables from the model are shown. 
 

Logistic Regression for Probability of Lane Encroachment 

 

TABLE 3 shows the results of the logistic regression.  The parameter estimates can be used to 

estimate the log of the odds of lane encroachment associated with a particular alignment category 

(overall, about 7.5% of observations had a lane encroachment).  A positive coefficient implies 

that the probability of encroachment is higher for that alignment category compared to a flat 

tangent section.  Consistent with the lane position model, the alignment categories that include a 

horizontal curve have a higher probability of an encroachment compared to a flat tangent section.  

However, unlike the lane position model, tangents with sag curves and straight grades have a 

higher probability of encroachment compared to a flat tangent section.  This model also indicated 

the probability of lane encroachment was higher for the youngest drivers and decreased with 

increase in age. 

 

TABLE 3: Results for probability of lane encroachment 

Variable Estimate Standard Error 
Intercept -4.7046 0.1421 

Flat Tangent ---- ----- 

Grade 0.8546 0.0947 

HC_C1 0.2972* 0.2005 

HC_C2 1.7665 0.1651 

HC_S1 1.6418 0.1237 

HC_S2 1.2792 0.2643 

HC_STR 1.9685 0.0918 

HT_C1 0.2021* 0.1440 

HT_C2 0.1462* 0.2744 

HT_S1 0.7310 0.1082 

HT_S2 1.0558 0.1223 

Note: *Not statistically significant at the 0.05 level.  Only the alignment variables from the model are shown. 
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Linear Regression with Mean Speed 

 

The models estimated for mean speed indicated that horizontal tangents with sag 2 vertical 

curves (HT_S2) were associated with highest values and horizontal curve with crest 1 vertical 

curves (HC_C1) were associated with the lowest values.  These models are not shown here for 

the sake of brevity.  In addition, mean speed may not be relevant unless it is considered along 

with other factors including speed limit and specific geometric features. 

 

Models with Curve Radius and K Values 

 

In addition to the models that were estimated with alignment categories, models were also 

estimated using radius of horizontal curve (R) and the K value for vertical curves.  The models 

indicated that horizontal curves with smaller radii (i.e., sharper horizontal curves) were 

associated with higher absolute values of the lane deviation and higher encroachment 

probabilities.  The results regarding the effect of K on lane deviation were not as consistent; 

some models showed lower K values associated with higher lane deviations, while others 

showed the reverse.  Again, these models are not shown here for the sake of brevity. 

 

Results from Aggregate Analysis 

 

Table 4 shows the results of the aggregate analysis.  For each homogenous segment, CMFs for 

fatal and injury crashes were calculated based on the equations in Bauer and Harwood (2014); 

depending on the alignment category, the CMFs are a function of R, K, Lc, and Lv.  Similarly, 

the performance measures were also calculated for each homogenous segment
2
.  Then, for each 

alignment category, a weighted average was calculated (using the number of observations as the 

weight) to determine an overall average for each alignment category.  For each column in Table 

4, the alignment categories with the three highest values are highlighted in bold and the four 

lowest values are highlighted in italics.  The three alignment categories with the highest CMFs 

are HC_C2, HC_S1, and HC_STR.  The three alignment categories with the highest absolute 

value of lane deviation and lane encroachment proportion are also HC_C2, HC_S1, and 

HC_STR.   

 The four alignment categories with the lowest CMFs are Flat Tangent, HT_C1, 

HT_C2, and HT_S2.  The four alignment categories with the lowest absolute value of lane 

deviation are HT_C1, HT_C2, HT_S1, and HT_S2.  Similarly, the four alignment categories 

with the lowest lane encroachment proportions are Flat tangent, HT_C1, HT_C2, and HC_C1.  

Again, there is a good match between the alignment categories with the lowest CMFs and the 

alignment categories with the lowest values for the lane deviation measures. 

 

 

 

 

 

 

                                                 
2
 Unlike the disaggregate analysis, the aggregate did not specifically account for the presence of lead vehicles or 

vehicles in the opposing lane.  Hence, the two sets of results may not be completely consistent with each other. 
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TABLE 4: CMFs and Performance Measures 

Alignment 

Category CMF Speed

Speed 

variance

Absolute 

value of 

lane 

deviation

Variance of 

lane deviation

Lane 

encroachment 

proportion

Horizontal 

acceleration

Flat Tangent 1.000 91.9 2.373 22.5 332.2 0.019 0.018

Grade 1.235 83.9 6.453 22.3 218.4 0.055 0.022

HC_C1 1.505 81.1 2.592 26.3 309.1 0.021 0.064

HC_C2 1.527 78.5 0.659 33.2 312.4 0.091 0.047

HC_S1 1.919 88.9 1.071 31.2 329.0 0.106 0.083

HC_S2 1.393 87.0 1.319 26.9 132.0 0.055 0.077

HC_STR 1.782 81.9 5.737 33.0 502.2 0.139 0.072

HT_C1 1.000 81.7 2.556 21.3 186.9 0.023 0.020

HT_C2 1.000 87.8 0.738 18.8 43.7 0.023 0.023

HT_S1 1.176 84.9 3.528 22.3 294.6 0.049 0.025

HT_S2 1.000 88.3 0.782 20.1 56.6 0.084 0.028  
 

CONCLUSIONS FROM PHASE 1 

 

The analysis of the NDS data has shown that the alignment categories that include a horizontal 

curve have the worst performance in terms of the lane deviation measures.  In addition, sharper 

horizontal curves are associated with the higher absolute values of lane deviation.  The analysis 

was conducted using both disaggregate and aggregate methods.  Comparison of the CMFs from 

Bauer and Harwood (2014) with the performance measures indicates a good match with the lane 

deviation measures, indicating that the lane deviation measures could serve as good surrogates 

for crash propensity.  The UNC team was also successful in developing an algorithm that used 

the RID to identify vertical curves.  This algorithm was also validated using ground truth data 

from Washington. 

 

PHASE 2 RESEARCH PLAN AND PROPOSAL 

 

The results from Phase 1 demonstrated the value in conducting further research on this topic to 

investigate driver performance associated with the combination of horizontal and vertical 

alignment and identify potential countermeasures.  Phase 2 will be conducted by the same team 

members at UNC including Raghavan Srinivasan, Daniel Carter, and Bo Lan.  The proposed 

approach in Phase 2 is quite similar to the approach in Phase 1, but with some important 

modifications: 

 

 Sample size. The sample of LinkID-trips will be about 5 times higher than the LinkID-

trips investigated in Phase 1.  About 6000 LinkID-trips are being targeted.  VTTI 

indicated that 6000 is probably the maximum that they can handle due to “limitations in 

the computing cost of generating exports, within the time constraints typically present in 

these projects”.  Data for more trips can be the requested if the request is limited to less 

frequent information (e.g., 1 Hz instead of 10 Hz).  However, at this time, we feel that 

less frequent data may not provide the necessary level of detail for the analysis, 

especially for some performance measures such as lane deviation. 
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 Identifying rural two lane roads.  As discussed earlier, in Phase 1, some portions of the 

road sections were multilane roads rather than rural two lane roads.  We have refined our 

approach for identifying rural two lane roads, and identification of two-lane roads in 

Phase 2 will not rely on the number of through lanes from the “Lanes” layer, but will 

focus on other variables present in the RID, such as the directional lanes values in the 

“Links” layer. 

 Use of radar data.  Radar data will be used to obtain more accurate information about 

lead vehicles.  Based on Hallmark et al., (2014), we were reluctant to use the radar data in 

Phase 1, and used the forward video to determine if a lead vehicle could have impacted 

the speed of the subject vehicle.  However, communication with VTTI has revealed that 

the radar data are quite reliable in providing information about the lead vehicle. 

 Combinations of alignment categories.  Conversations with the North Carolina 

Department of Transportation (NCDOT) has revealed anecdotal information about the 

safety issues regarding certain combinations, e.g., crest vertical curve followed by a 

horizontal curve to the left have been associated with a large number of crashes involving 

motorcycles.  Although motorcycles are not part of the SHRP2 data, such combinations 

may be associated with safety problems for cars and trucks as well.  Another issue that 

will be investigated is the distance between curves, i.e., isolated curves versus closely 

spaced curves.  Most previous studies, including the Bauer and Harwood (2014), have not 

considered the combined effect of multiple roadway features that are adjacent to each 

other. 

 Other States.  Phase 1 only included data from Pennsylvania and New York.  Phase 2 will 

include data from at least one other state (North Carolina). 

 Countermeasures and roadside data.  The results from Bauer and Harwood (2014) are 

most useful if an agency is considering changes to roadway alignment, which are 

obviously expensive changes.  So, agencies are looking for low cost countermeasures that 

could be effective in reducing crashes.  In Phase 1, countermeasures could not be 

investigated partly due to the limited time for analyzing the data.  In Phase 2, information 

on countermeasures will be an important component of the study.  In addition, data from 

the roadside will be compiled and included in the analysis. 

 More sophisticated statistical analysis.  Due to the limited time that was available for the 

analysis, the analysis methods in Phase 1 were limited to linear regression and logistics 

regression.  Phase 2 would involve the use of more sophisticated analysis techniques 

including time series and Bayesian methods. 

 

Tasks 

 

Following is the list of tasks that are proposed for Phase 2: 

 

1. Obtain IRB approval from UNC IRB.  This is the first task that will be conducted.  Since, 

UNC will not be directly handling any of the personal identifying information from the 

NDS data, quick approval is expected, as in the case of Phase 1. 

 

2. Review of Literature.  The primary purpose of this task is to review any recent studies 

that have used NDS data.  The intent is to get some insights into any new statistical 

methods that may have been used to analyze the NADS data and new measures of 
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performance that may have been used as surrogates for crashes.  The outcome from this 

task will be an initial list of performance measures and statistical methods that could be 

applied in Phase 2. 

 

3. Refine Work Plan.  This task will be done in consultation with NCDOT and VTTI.  This 

task will focus on the following issues: 

a. Sample size of LinkID-trips.  As mentioned earlier, the UNC team is planning to 

request data for 6000 LinkID-trips due to limitations mentioned earlier.  However, 

VTTI is continuing to work on other alternatives that may allow a larger number 

of LinkID-trips to be exported, and this will be discussed as part of Task 2. 

b. Scope of the eye glance data collection.  The UNC team has already had some 

discussion with VTTI about the cost implications of two options for compiling the 

eye glance data.  The first option is to compile the eye glance data only for a 

sample of the LinkID-trips (say, for about 30% of the LinkID-trips).  The second 

option is to compile the eye glance data for all the trips. 

c. Combination of alignment categories.  The analysis of the driver performance 

data is expected to provide insight into the safety aspects of the combination of 

alignment categories.  However, if anecdotal or other evidence regarding certain 

combinations are available, that may guide the UNC team in looking for certain 

combinations, e.g., crest vertical curve followed by a horizontal curve to the left, 

which was mentioned above. 

d. List of site characteristics.  A final decision will be made on the list of site 

characteristics that will be compiled including roadway and roadside 

characteristics.  In addition to the RID, the sources will include extracting 

information from the forward video, aerial photographs, and google maps.  

Examples include information that can be used to estimate a roadside hazard 

rating (RHR), traffic control devices and signs (including posted speed), and 

treatments such as reflectorized pavement markings (RPMs) and rumble strips.  

Many of these variables including traffic signs/traffic control devices, rumble 

strips, guardrail presence, and shoulder width/type are available in RID.  Other 

features such as RHR and pavement markings can be compiled through the 

forward video and other venues such as google earth. 

 

 During Task 3, UNC and VTTI will negotiate a data sharing agreement with VTTI.  

The agreement is expected to be very similar to the one that was signed for Phase 1.  The 

agreement will indicate the scope of the research study including the objectives, the data 

elements that are requested, who will be compiling the data including information that 

potential personal identifiers (e.g., eye glance information), how long the data should be 

kept at UNC after the completion of the study, the security procedures for the data at 

UNC, and a copy of the UNC IRB application. 

 

4. Identify Study Sites.  The intent is to identify sites in rural two lane roads by using the 

directional lanes values in the “Links” layer.  As in Phase 1, different types of sites 

including tangent, horizontal curve, sag and crest type 1, and combinations will be 

identified.  The method developed in Phase 1 will be used to determine the parameters 

and boundaries of vertical curves.  In addition, the UNC team will also seek to identify 



17 

 

sites where curves are next to each other, e.g., horizontal curve followed by vertical 

curve, or vice versa.  Similar to Phase 1, sites with at least 20 trips will be identified.  In 

Phase 1, the VTTI InSight website was used to determine the range of trips on each route.  

VTTI has indicated that a GIS layer of this trip file is now available and can be used in 

Phase 2.  As in Phase 1, many of the sites are expected to be from New York and 

Pennsylvania, but sites from North Carolina will be included as well. 

 

5. Provide Study Sites to VTTI.  As discussed earlier, in Phase 1, the UNC team initially 

worked with the curve and grade files from the RID (Alignment and Location). However, 

since the NDS data maintained by VTTI is stored on the basis of LinkID as defined in the 

Links layer of the RID, the team identified the corresponding links by LinkID in the 

Links layer.  The approach is expected to be similar in Phase.  However, the UNC team 

will also explore the possibility of providing the data using “GIS buffers”. 

 

6. Obtain List of Trips.  As in Phase 1, VTTI is expected to provide UNC with the list of 

trips along with basic summary information about each trip including the number of 

crashes and near misses, time of day, and participant ID, and  the list of LinkIDs that each 

trip traversed.  UNC will select trips from this list and provide it to VTTI.  Trips 

involving crashes and near misses are of specific interest to the UNC team (there were no 

crashes or near misses in Phase 1). 

 

7. Obtain Time Series, Forward Video, and Eye Glance Data.  VTTI is expected to provide 

the time series and eye glance data as in Phase 1.  As in Phase 1, this information may be 

provided in batches.  The eye glance data is expected to be available later because 

extracting that data is a manual process.   

 

8. Data Reduction and Coding.  The forward video will be used to code information on the 

presence of vehicles in the opposing lane (which may affect the lane position of the 

subject vehicle), lighting, intrusions from vehicles and other road users, construction and 

maintenance activities, and other roadway/roadside characteristics not available from the 

RID.  At the same time, the UNC team will check for consistency between the time series 

data and the eye glance data to ensure that there are no obvious errors.  Following this, 

the time series data, the RID data, the eye glance data, and the coded data from the 

forward video will be merged into one file.  This may require the UNC team to use the 

computer program that was written in Phase 1 to combine the different data sets together 

to match the frequency in the time series data. 

 

9. Statistical Analysis.  As in Phase 1, the UNC team will conduct analysis at two levels: 

disaggregate and aggregate.  The disaggregate data will make use of the frame by frame 

(i.e., every 0.1 second) data using time series methods that specifically account for the 

correlation between successive observations.  The analysis will use random or fixed 

effects to account for repeated measures from the same driver and the same trip.  The 

primary dependent variables for this disaggregate analysis will include speed, lane 

deviation, whether there was a lane encroachment on the right or left side, and lateral 

acceleration.  The independent variables will include site characteristics (including 

geometry), any treatments/countermeasures implemented at a site, driver characteristics, 
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roadside characteristics, time of day, presence of lead vehicles (from radar), and presence 

of vehicles in the opposing lane (based on coded data from the forward video).  Speed, 

lane deviation, and lateral acceleration will be analyzed using linear regression methods 

with appropriate transformations.  The encroachment variable will be analyzed through 

logistic regression. 

 The aggregate analysis will be based on combining the data over homogenous 

segments for each driver and trip and using the summary information (mean and variance 

of speed, mean and variance of lane deviation, proportion of the section where there was 

a lane encroachment, maximum lateral acceleration within that section) as dependent 

variables.  As in the case of the disaggregate analysis, random and fixed effects will be 

explored to account for repeated measures from the same driver and the same site.  Linear 

regression and logistic regression models will again be used. 

10. Conclusions and Final Report.  Based on the results from aggregate and disaggregate

analysis, we expect to determine the following:

 Relationship between performance measures and crash propensity (based on the

CMFs in Bauer and Harwood, 2014).  This is expected to provide insight on the

appropriate surrogates that could be used in future research.

 Combinations of horizontal and vertical alignment associated with inferior driving

performance and potentially higher risk of crashes

 Potential effectiveness of countermeasures in affecting driver performance and

behavior

The results and conclusions from the effort will be prepared in the form of a final report. 
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PHASE 2 PROJECT SCHEDULE 

A 24 month project schedule is proposed.  The project schedule by task is shown below. 
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