Safety Implementation Assistance Program Update

Pam Hutton, AASHTO SHRP2 Implementation Manager

2016 TRB Safety Data Oversight Committee
May 10-11, 2016, Woods Hole, MA
SHRP2 at a Glance

- **SHRP2 Solutions** – 63 products

- **Solution Development** – processes, software, testing procedures, and specifications

- **Field Testing** – refined in the field

- **Program Implementation** – 350 transportation projects; adopt as standard practice

- **SHRP2 Education Connection** – connecting next generation professionals with next-generation innovations
SHRP2 Implementation: Moving Us Forward

$122 million

FUNDING ASSISTANCE

63

SHRP2 SOLUTIONS

350

PROJECTS IMPLEMENTED

- DOT: 52 Recipients
- MPO/LOCAL: 29 Recipients
- UNIVERSITY: 10 Recipients
- FEDERAL/TRIBAL: 7 Recipients

- RENEWAL: 179
- CAPACITY: 95
- RELIABILITY: 65
- SAFETY: 11
SHRP2 Implementation: Moving Us Forward

- Participants Engaged: 145,831
- Outreach Activities: 5,713
- Hours of Technical Assistance: 6,155

- Training: 5,474
- Workshops: 152
- Peer Exchanges: 40
- Demos: 29
- Showcases: 18
Consists of Two Large Databases:
- Naturalistic driving study (NDS) database; and
- Roadway Information Database (RID)

Naturalistic Driving Study (NDS):
- Crash, pre-crash, near-crash, and “normal” driving data
- 3,500+ drivers, 6 sites, all ages

Roadway Information Database (RID):
- NDS trip data can be linked to roadway data from the RID, such as the roadway location, curvature, grade, lane widths, and intersection characteristics.
- These two databases will support innovative research leading to new insights into crash causation.
SHRP2 Safety Program

NDS
RID

TRB Research Phase

Phase 1
Proof of Concept

Phase 2
In-Depth Research

Phase 3
Deployment

FHWA/AASHTO Implementation Phase

Seattle, WA
Buffalo, NY
Bloomington, IN
State College, PA
Durham, NC
Tampa, FL
Main Objectives

• Utilize IAP to demonstrate the use of the NDS Safety Data
• Increase states’ understanding of the potential uses of the data
• Identify safety countermeasures based on research projects
• Reduce crashes and save lives!
IAP Safety Process

Phase I – Proof of concept with a sample reduced data set

Phase II – full data set and in-depth research analysis with countermeasure identification

Phase III – deployment to adopt, champion or implement countermeasure nationally
Role of Safety Task Force (STF)

- Collaborate with FHWA, TRB, and research teams
- Oversee Safety Implementation Assistance Program for AASHTO
- Review research proposals and research findings
- Promote opportunities for State DOTs and their research partners to use the NDS/RID
- Provide a customer/user perspective to SDOC

Activities

- Monthly conference calls
- Monitoring progress of teams through series of two interviews – focus on program support, not team evaluation
- Reporting findings to STF, FHWA, and TRB
Phase 1 – Proof of Concept

- 9 months
- Reduced set of NDS and RID data
- 10 states/11 projects
- Teams presented to STF – October 19th and 20th
- FHWA to selected Phase 2 projects with input from STF
Phase 1 Results - Summary

• All teams excited with potential research findings
• No fatal flaws in research or ability to use NDS data
• Sample of potential outcomes through POC:
 o New data processing tools
 o New highway lighting standards
 o New crash modification factors
 o New methods for establishing speed limits and advisory speeds
 o New understanding about effectiveness of work zone devices/messaging/campaigns
• 2-year, in-depth research proposals
• Lower-than-expected Phase 2 cost proposals
Phase 2 – In-Depth Analysis

- Selections were announced in December 2015
- Phase 2 began January 2016
- Conduct in-depth research and analysis
- Countermeasure identification and refinement
Please see the new Safety Brochure for additional information.

Phase 2 In-Depth Research and Analysis Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>DOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Safety</td>
<td>Florida DOT</td>
</tr>
<tr>
<td>Roadway Departures</td>
<td>Iowa DOT</td>
</tr>
<tr>
<td>Speeding</td>
<td>Michigan DOT</td>
</tr>
<tr>
<td></td>
<td>Washington State DOT</td>
</tr>
<tr>
<td>Work Zones</td>
<td>Minnesota DOT</td>
</tr>
<tr>
<td>Horizontal and Vertical Curves</td>
<td>North Carolina DOT</td>
</tr>
<tr>
<td>Interchange Ramps</td>
<td>Utah DOT</td>
</tr>
<tr>
<td>Adverse Conditions</td>
<td>Wyoming DOT</td>
</tr>
<tr>
<td>Roadway Lighting</td>
<td>Washington State DOT</td>
</tr>
</tbody>
</table>
Phase 2 – IAP Status Updates

- All IAP teams under contract with the FHWA
- Most teams are not fully contracted with their subs yet
- Two teams are entering data collection process and will be in contact with VTTI shortly.
- Importance of getting under contract ASAP:
 - **September 30, 2017** - deadline to obligate funding for Phase 3.
 - Most teams’ schedules for Phase 2 are 18-24 months (starting in January 2016)
 - **May 2017** – reports due from teams on early findings.
 - Phase 3 funding decisions – May to September 30, 2017 (last day to obligate funds under SHRP2)
Safety IAP Schedule

Phase 2 – 18 to 24 Months

IAP Teams Report Early Findings

FHWA Select and Obligate Funding for Phase 3 Projects

Deadline to obligate SHRP2 funds

Today

May 2016

May 2017

Sept. 30

May 2017

Sept 2017
Phase 3 - Implementation

- Adopt, champion, and implement countermeasures
- Integrate findings into Manuals, Guidelines, Policies
- Conduct pilot testing
Minnesota IAP

Evaluation of Work Zone Safety Using the SHRP2 Naturalistic Driving Study Data

Iowa State University and the Minnesota DOT
Rationale

- > 1,000 fatalities and 40,000 injuries
- Difficult to understand underlying causes of work zone crashes (driver behavior)
- Difficult to isolate work zone related crashes
- SHRP2 data offers unique opportunity:
 - study 1st hand account of activities leading to safety critical events and normal driving
 - identify whether safety critical events were work zone related
Objective

- Investigate the role of driver behavior (speeding and distraction) and work zone configuration (roadway characteristics) in crash risk.
Modeling Safety Risk
Phase 1 analysis

- Focused on rural multi-lane
- Conducted logistic regression using 110 crash/near-crash and 89 baseline events
- Preliminary results indicated
 - 10 mph over speed limit 11.7 times more likely to be involved in a safety critical work zone event than baseline
 - 3.3 times higher if distracted
 - 3.4 times more likely to be female
 - Higher when speed deviation is higher
 - Model showed relationship between driver & work zone characteristics and safety risk can be developed
 - Baseline not well correlated to crashes
Modeling Safety Risk
Phase 2 proposed task

- **Methodology**
 - Expand to include all roadway types
 - Logistic regression which provides odds ratios
 - dependent variable: \(P(\text{probability of safety critical event}) \)
 - co-variates: driver, roadway, work zone characteristics

- **Data Needs**
 - Have location of work zone for near-crash, obtain location for crashes (need to work with VTTI)
 - Request time series data for 10 – 15 normal driving events for each safety critical work zone location
 - Reduce roadway/work zone configuration from RID, aerial imagery, forward view, 511 data
 - Reduce driver speed from time series data
 - Reduce glance location and duration at secure data enclave
 - Coordinate data needs across tasks
Objective: develop relationship between speed and driver/work zone characteristics

Data: utilized baseline time series data for rural multilane work zones

- 87 baseline events included driving within work zone
- Full trace through work zone not available
- Sampled speed (\(\sum\) over 1.5 sec) at various points within work zone — dependent variable
- 226 observations over 87 work zones
- Extracted work zone configuration from forward video
- Driver characteristics from Event Detail Table
Speed Prediction Model

Phase 1 analysis

Methodology
- Linear mixed effects model (LME)
- Accounted for repeated sampling within same work zone
- Developed best fit model, used AIC and other metrics

Results
- Presence of curve speed 7.2 mph lower
- Lower speeds with more lanes closed
- 1.6 mph lower when DMS is present
- 2.9 mph lower when workers present (90%CI)
- Result demonstrated feasibility of approach

Limitations
- Similar as for safety critical events
- Complete traces not available in baseline data
- Secondary tasks only coded for last 6 seconds of baseline
Speed Prediction Model
Phase 2 proposed task

- **Outcome**
 - Prediction of speed given roadway, work zone, and driver characteristic
 - Impact of specific work zone countermeasures on speed
 - *i.e. different work zone configurations*
 - Output can be used to select configurations/countermeasures which improve speed compliance and safety
Work Zone Reaction Point
Phase 1 analysis

- Addressed question of how to get drivers attention in advance of work zone

Data

- Utilized baseline events with data in advance of work zone (13 traces)
- Correlated time series data to location upstream of work zone
- Correlated position of work zone signs to time series
- Used driver characteristics (i.e. distraction from Event Detail Table)

Methodology

- change point models developed for each work zone
Work Zone Reaction Point

Phase 2 Proposal

- **Outcome/Benefit:**
 - Location where drivers react given specific work zone characteristics
 - Indicates responsiveness to signing
 - Implications for sign placement
 - Reaction to back of queue
 - *Drivers texting may be more likely to miss end of queue*
Questions?

- **FHWA SHRP2 website:** fhwa.dot.gov/goSHRP2
 - Apply for implementation assistance by April 29
 - Product details and webinars

- **AASHTO SHRP2 website:** SHRP2.transportation.org
 - Implementation information for AASHTO members
 - Information about SHRP2 safety implementation

- **Safety Implementation Managers:**
 - Aladdin Barkawi, FHWA: aladdin.barkawi@dot.gov
 - Kelly Hardy, AASHTO: khardy@aashto.org