

Safety Programs of the Future THE VISION

Susan Martinovich P.E. CH2M Hill

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

1/11/2013

- The National Highway Safety Strategy
- Used the 1997 AASHTO strategic plan as a base
 - Broadened the outreach
 - More inclusive in ownership
 - Longer time horizon at least 25 years
- Safety Culture strategies were included
- State Strategic Highway Safety Plans required

THE PAST Highway Deaths

COUNTERMEASURES to ZERO

AASHTO Plan State Strategic Highway Safety Plans

Behavioral Countermeasures

- Primary belt laws and laws for all seating positions, belt reminder systems
- Sobriety checkpoints/saturation patrols, ignition interlock for all convicted offenders
- High visibility enforcement and strategic communications
- Standardized, automated, and linked data systems
- Speed governor systems

Infrastructure Countermeasures

- Pervasive protection/ prevention for lane departures
- Intersection improvements
- Median cross-over
 prevention
- New design codes and new tools
- Road safety audits—RSAs
- New tools e.g. HSM and safety analyst 1/11/2013

Vehicle Countermeasures

- Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication
- Electronic stability control
- Other safety features:
 - Lane departure warnings
 - Adaptive headlights
 - Forward collision warning
 - Brake assist

Future SHRP ----- SHRP2

Source: Treat, 1979 as cited in AASHTO Highway Safety Manual

Driver Study

We "UPGRADED" ③ Volunteer Vehicles

- As of November 19, 2012
 - 1,871 participants on the road, 671 completed participants, 242 remaining to recruit
 - 2,196 vehicle-years to date, 59% of 3,662 projected total;
 (current projected total is 94% of 3,900 goal)
 - 10.7M estimated vehicle miles to date
 - 177 known crashes (more in database not yet identified)
 - 9,306 centerline miles of roadway data collected; 75% of total;

about 3,200 miles to collect in 2013

New York

Safety Program Goals

- Complete data collection by November 2013
- Complete the NDS and Roadway data files by March 2014
- Make the data broadly accessible Development activities
 - Develop user-friendly subfiles and analysis tools
 - Produce public files of de-identified data
- Market the data
- Prepare for long-term stewardship of the data

• USE THE DATA

No number greater than zero is acceptable on nation's roadways

> Our work as transportation professionals is not completed until we reach zero.

SHRP2

Designing Effective Driver Assistance Systems – 'What was the Driver *Really* Doing?'

Richard K. Deering SHRP2 Safety TCC

> AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

U.S. Department of Transportation

The Science of Non-Events - studying what 'might' have occurred

- Crash Worthiness
 - the event definitely occurs (somebody crashes)
 - the driver is a passive element that is acted upon by the occupant protection system
 - the results are measurable
- Crash Avoidance
 - the 'event' (behavior) may or may not result in a crash
 - the driver is an active (and somewhat unpredictable) element in the vehicle control loop
 - interpreting behaviors and results is not straightforward

Understanding Driver Behavior and Crash Risk – an evolving science

Historical Approach - External Observations of Actual Crashes

Summary of 4 post-hoc clinical studies of crash causation				
	UK 1975	IU 1977	UDA 1999	NMVCCS 2008
Human	94	93	99	97
Environment	28	34	5	33
Vehicle	8	13	1	12
Total %	130	140	105	132

1/11/2013 Source: Shinar (2012), Seventh SHRP2 Safety Symposium, Washington, DC

What is the Driver Really Doing??

Driver's Secondary Task Types observed in the 100-Car study

- Day Dreaming
- Dining
- External Distraction
- Internal Distraction
- Passenger-Related Tasks

- Personal Hygiene
- Smoking
- Talking / Singing: No
 Passenger Apparent
- Vehicle Related Task
- Wireless Device

Other...

Source: Neale, Dingus, Klauer, Sudweeks & Goodman (2005), An Overview of The 100-Car Naturalistic Driving Study and Findings, Enhanced Safety of Vehicles Conference, Paper Number 05-0400

Relating Driver Behavior to Crash Risk association is *not* causation

- Just because the driver has been observed doing 'something' prior to a crash does not mean that act is a causal factor in the crash
- Some have noted that in nearly all motor vehicle crashes the driver can be observed to be breathing immediately prior to the event
 - Is breathing associated with crashes yes...
 - Is breathing a *cause* of crashes probably not...

Understanding Driver Behavior and Crash Risk – an evolving science

Naturalistic Approach – Internal Observations of 'Crashes and Near-Crashes'

Figure 1: Risk Odds Ratios Determined by the Original 100-Car Study Analyses and Two

Study FMCSA Analyses

Source: Visual Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices, Docket No. NHTSA-2012-053, Federal Register / Vol. 77, No. 37 / Friday, February 24, 2012, pg. 11205

What is a "Near Crash"?

"<u>Near-crash</u> – Any circumstance that requires a rapid, evasive maneuver by the subject vehicle, or any other vehicle, pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive maneuver is defined as a steering, braking, accelerating, or any combination of control inputs that approaches the limits of the vehicle capabilities."

Source: Dingus, et. al., The 100-Car Naturalistic Driving Study, Phase II – Results of the 100-Car Field Experiment, DOT HS 810 593, April 2006

Driver Assistance System Effectiveness What happens in the real world?

- A recent study* of the insurance effects of Crash Avoidance technologies deployed in the real world suggest observable benefits for
 - Forward Collision Avoidance Systems and
 - Adaptive Headlights
- While "Lane Departure Systems have yet to demonstrate benefits"
- Once again, these are only external observations of results. We need more detailed naturalistic information to understand what is really happening in the vehicle.

* Source: IIHS Status Report Vol.47, No. 5, July 3, 2012, Special Issue: Crash Avoidance

Applying SHRP2 NDS Data to Resolve Real World Issues

Pilot Analyses of the SHRP2 NDS Data are underway:

- Inattention-Risk Function for Lead Vehicle Crashes (SAFER @ Chalmers)
- Evaluation of Offset Left-Turn Lanes (MRI Global)
- Car-Following Behavior, Driver Distraction and Capacity-Reducing Crashes on Congested Freeways (CTS @ UMinn)
- Relationship between Driver Behavior and Safety on Curves (CTRE @Iowa State)

Tony Furst

FHWA Associate Administrator for Safety The benefits of SHRP2 Safety Research

Discussion

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

SHRP2

THE BENEFITS

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

 \bigcirc

- We've done remarkably well with what we have.
- The databases link driver behavior and performance to the physical environment (road design details, roadside hardware, automated enforcement) and transient elements (weather, work zones)
- Enables a whole new field of study that was not available before.

- The list of potential research pursuits are as open as your imagination.
- The objective, as it's always been, is saving lives.
- How can we mine this data to develop new countermeasures or make changes to design guides and associated practices?

Trip File Headers
Reduced Datasets
Consent Agreements
Secure Enclaves

RESEARCH SHRP2

Problem Identification Behavioral Countermeasures Vehicle Countermeasures Infrastructure Countermeasures Potential changes to:

AASHTO Green Book Roadside Design Guide Highway Safety Manual

