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Presentation Overview

• Service Life Design – What is it?

• Historical Background – What’s been done?

• Current Status / Gaps – What’s being done?

• Proposed Research on Service Life Design –
What’s next?



Service Life Background

• Bridge design focuses on structural engineering 
– Determining loads, sizing components, and selecting 

materials by their strength properties (f’c, fy, etc.)

– Extremely important, but does little to ensure that a 
structure will remain in use for a given period of time



Service Life Background

• When a structure reaches the end of its life
– The cause is primarily from material deterioration 

– Due to the environmental exposure conditions



Service Life Design Principles

• All materials deteriorate with time

• Every material deteriorates at a unique rate

• Deterioration rate is dependent on:
– Environmental exposure conditions
– Material’s protective systems – durability 

properties



Service Life Design (SLD)

• Design approach to resist deterioration caused 
by environmental actions
– Also called Durability Design
– Often referred to as Design for 100-year Service 

Life

• Not designing for the Service Limit States I, II, 
and III per LRFD 3.4



Service Life Design (SLD)

• Similar to strength design to resist structural 
failure caused by external loads

– External Loads  Environmental Actions

– Material Strength  Durability Properties

• Both strength and Service Life Designs satisfy 
scientifically based modeling equations



Goals of Service Life Design

• Owners – Need assurance that a long-lasting 
structure will be designed, built, and operated 
(Effective use of public funding $$)

• Engineers/Contractors/Asset Managers –
Need quantifiable scientific methods to evaluate  
estimated length of service for bridge 
components and materials



Service Life Background

• Significant research has been completed over 
the past 25 years on how materials deteriorate 
with time (particularly reinforced concrete)

• Mathematical solutions have been developed to 
model deterioration behavior



Past Practice – 1996-2000



Common Deterioration Types

• Reinforcing steel corrosion
• Concrete cracking, spalling, 

delamination

• Structural steel corrosion 
following breakdown of 
protective coating systems



Environmental Exposure

• Chlorides from sea water or 
de-icing chemicals

• CO2 from many wet / dry 
Cycles

• Temperature / Relative 
Humidity

• Freeze / Thaw Cycles
• Abrasion (ice action on piers, 

studded tires on decks)



Material Resistance

• Reinforced Concrete
– Adequate reinforcing steel cover dimension
– High-quality concrete in the cover layer

• Structural Steel
– Chemical composition for corrosion resistance
– Protective coatings



Deterioration Modeling

• Reinforcing Steel Corrosion is defined with a 
two-phase deterioration model
– Initiation – No visible damage is observed
– Propagation – Corrosion begins and progresses 



Example Deterioration Model

• Chloride Ingress – Fick’s 2nd Law of Diffusion 
for Corrosion Initiation

• Red – Environmental Loading
– Co & Cs are the Chloride Background and Surface Concentrations
– Treal is the Annual Mean Temperature at the project site

• Green – Material Resistance
– DRCM,0 is the Chloride Migration Coefficient, α is the Aging Exponent, 

both are functions of the concrete mix (W/C ratio, SCMs)
– a is the Concrete Cover
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Chloride Profiles vs. Age
constant Dapp,c = 15.1 mm2/yr
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Current Specifications

• fib Bulletin 34 – Model Code for 
Service Life Design (2006)

• fib Model Code for Concrete 
Structures 2010

• ISO 16204 – Durability – Service 
Life Design of Concrete Structures 
(2012)

• All focus on concrete structures 
only, little available for steel 



Through-Life Management

• Integrating all stages in the life of a structure

– Design
– Construction
– In-Service Maintenance & Inspection
– Intervention (Repair & Rehabilitation)
– Dismantling

• Future oriented toward sustainable, life-cycle 
thinking



Through-Life Stages



Service Life Design Strategies

• Avoidance of deterioration – Strategy A

• Design based on deterioration from the 
environment – Strategy B
– Full probabilistic design
– Deemed to satisfy provisions
– Semi-probabilistic or deterministic design

• “One size does not fit all” – Multiple strategies 
may be used on a single bridge



Avoidance of Deterioration

• Also called the “Design-Out” approach
• Achieved by either:

– Eliminating the environmental exposure 
actions
• e.g., Use of alkali-non-reactive aggregates

– Providing materials with resistance well 
beyond the requirements needed
• e.g., Use of stainless steel reinforcement
• Not always the most cost-effective solution



Full Probabilistic Design

• Uses mathematical models to describe observed 
physical deterioration behavior

• Model variables are:
– Environmental exposure actions (demands)
– Material resistances (capacities)

• Variables represented by mean values and 
distribution functions (std. deviations, etc.)

• Probabilistic, Monte-Carlo type analysis to 
compute level of reliability



Full Probabilistic Design

• Reliability based like that used to develop 
AASHTO LRFD code for structural design

• Sophisticated analysis often considered beyond  
the expertise of most practicing bridge engineers

• Work effort may be regarded as too time 
consuming for standard structures

• Has been reserved for use on large projects



Deemed to Satisfy Method

• Prescriptive approach used in most major 
design codes, like AASHTO LRFD sections 
2.5.2.1 & 5.12

• Based on some level of past performance –
“Rules of Thumb”

• No mathematical deterioration modeling
• Simplistic and not quantifiable
• Lowest level of reliability



AASHTO LRFD Provisions

• 2.5.2.1 – Durability

– Contract documents shall call for quality materials 
and … high standards of fabrication and erection.

– Structural steel shall be self-protecting, or have long-
life coating systems or cathodic protection.

• Good intention, but hardly quantifiable



AASHTO LRFD Provisions

• 5.12.1 – Durability – General

– Concrete structures shall be designed to provide 
protection of the reinforcing and prestressing steel 
against corrosion throughout the life of the structure.

– Special requirements that may be needed to provide 
durability shall be indicated in the contract 
documents.

• Again, not very much guidance



AASHTO LRFD Provisions

• 5.12.3 – Durability – Concrete Cover

– Cover for unprotected prestressing and reinforcing 
steel shall not be less than that specified in Table 
5.12.3-1 and modified for W/C ratio…

– Modification factors for W/C ratio shall be the 
following:

• For W/C ≤ 0.4 ……………………………………….. 0.8
• For W/C ≥ 0.5 ……………………………………….. 1.2



AASHTO LRFD Provisions

• Specified concrete cover dimensions

• Cover minimally related to concrete properties



Deemed to Satisfy Evaluation

• fib Commission 8 – Durability

– Used full probabilistic methods 
to evaluate level of reliability 
for deemed to satisfy code 
provisions for chloride ingress

– 9 countries evaluated, 
including US

– Results published in 2015



Reliability Levels

Summary of Reliability Index, β versus Probability of Failure, Pf

Pf Reliability β = -φU
-1(Pf)

where -φU
-1(Pf)  is defined as the inverse standard 

normalized distribution function

Example

10% 90% 1.3
fib Bulletin 34 Model Code for Service Life, corrosion 
initiation

6.7% 93.3% 1.5
Eurocode EN 1990 (service limit state calibrated for a 50 
year design life)

1.0% 99% 2.3
0.1% 99.9% 3.1

0.02% 99.98% 3.5
AASHTO LRFD Strength I (calibrated for 75 year design 
life)

0.007% 100% 3.8
Eurocode EN 1990 (ultimate limit state calibrated for a 50 
year design life)

50% 50% 0.0

80% 20% -0.8
fib TG8.6 Deemed to Satisfy for exposure XD3 (chlorides 
other than seawater) in USA - 50 year design life



Semi-Probabilistic Design

• Uses same mathematical model as Full 
Probabilistic Design

• Load factors on environmental demands
• Resistance factors on material properties
• Direct solution to model equations
• Not enough data to properly determine 

appropriate factors and reliability level
• Method expected to be adopted by codes in the 

future



Service Life Designed 
Structures 

• Confederation Bridge, Canada –1997 (100 
years)



Service Life Designed 
Structures 

• Great Belt Bridge, Denmark – 1998 (100 years)



Service Life Designed 
Structures 

• Gateway Bridge, Brisbane – 2010     (300 years)



Service Life Designed
Structures 

• Ohio River Bridge, KY – 2016 (100 years)



Service Life Designed
Structures 

• Tappan Zee Bridge, NY – 2018 (100 years)

courtesy of New York State Thruway Authority



Need More Focus on These

• Representing the majority of the 600,000+ 
bridges in the US



SHRP2 R19A Team

RESEARCH –
TRB

IMPLEMENTATION –
FHWA/AASHTO

SUBJECT MATTER EXPERTS / 
LOGISTICS SME LEAD – CH2M

TECHNICAL SMEs –
COWI

LEAD ADOPTER 
AGENCIES



Research Work Completed

• Project R19A – Service Life Design Guide

 http://www.trb.org/Main/Blurbs/168760.aspx

http://www.trb.org/Main/Blurbs/168760.aspx


IAP Lead Adopter Agencies

Oregon

Central Federal Lands
(project in Hawaii)



IAP Lead Adopter Agencies

Iowa

Pennsylvania

Virginia



R19A IAP Funding

• State Agencies were awarded $150,000 each as 
Lead Adopters

• FHWA CFL was awarded $75,000

• Funding for technical assistance from the SME 
team is through SHRP2, and NOT part of 
agency awards



SHRP2 R19A Implementation Assistance 
Program Goals

• Promote Service Life Design concepts
• Marketing, outreach & training
• Target 15% of state DOTs by 2016

• Produce basic elements for inclusion in an 
AASHTO Service Life Design Guide

• Coordinate with SCOBS and T-9
• Build a strong technical foundation

• Develop training & reference materials
• Lessons learned summaries



Current Work Focus Areas

• Tests for durability design of new bridges and 
deck preservation of existing bridges
– Testing concrete cores to evaluate chloride loading 

from de-icing chemicals and sea water
– Concrete diffusion (permeability) properties
– Measurement of as-constructed concrete cover

• Development of Service Life Design 
specification language for Requests for 
Proposals



Design Standard

• International Federation of Structural Concrete
• fib Bulletin 34 – Model Code for Service Life 

Design (2006)
– Establishes design procedures

• To resist deterioration
• From environmental actions



IAP Projects



IAP Team Leaders

• FHWA Central Federal Lands
– Bonnie Klamerus, Mike Voth

• Iowa DOT
– Ahmad Abu-Hawash, Norm McDonald

• Oregon DOT
– Bruce Johnson, Paul Strauser, Zach Beget, Ray Bottenberg, 

Andrew Blower, Craig Shike

• Pennsylvania DOT
– Tom Macioce

• Virginia DOT
– Prasad Nallapaneni, Michael Brown



FHWA Central Federal Lands

• Tropical Coastal Exposure on North Shore, Island of Kauai, HI
– Three bridge replacements on Highway 560 over Wainiha Stream
– 500’ to 1,000’ from the coastline in remote setting
– Single lane, 14’ wide roadway



FHWA Central Federal Lands



FHWA Central Federal Lands

• Tropical Coastal Exposure on North Shore, Island of 
Kauai, HI
– Initial water samples taken for salinity measurements 

showed low chloride content
– Additional samples to be taken at different times of year 

and at high and low tide
– NT Build 492 tests will be performed on baseline concrete 

mix designs and will be contracted through the University 
of Hawaii during the design process

– Coring of existing abutments at water line / splash zone for 
surface chloride concentration will be performed under the 
construction contract permits



Iowa DOT

• New Bridge at Site with Extreme De-Icing Chemical Spray 
Exposure
– Woodbury County Highway K-25 over I-29 in western Iowa

– 403’ Long by 43’-2” Wide 4-Span Continuous Steel Plate Girder Bridge
– Using A1010 High Chromium Structural Steel for two girder lines along 

with A709 Grade 50W for the remaining four girder lines
– Lab and field testing of the A1010 steel for structural and corrosion 

resistance performance
– Industry Workshop – March 18, 2015
– Currently under construction, fabrication nearly complete



Iowa DOT

• Replace Twin Structures on I-35 over South Skunk River 
near Ames
– Performed chloride profile testing to determine chloride loading (6 cores 

from existing structures, 126 cores from 19 bridges on 2 route corridors)
– Performed NT Build 492 tests on representative concrete mix designs to 

evaluate expected deck/railing service life

– Southbound structure – Under construction
– Designed using current Iowa DOT policies
– Northbound structure – Scheduled for January

2018 Letting
– Will be designed using proposed methodology for 

deterioration from the environmental loading
– Report on direct comparison between the two structures



Oregon DOT

• I-5 Columbia River Crossing Design/Build – Portland to 
Vancouver
– Evaluate/modify RFP requirements for contractor to 

design/document to a 100-year 
service life

• Replacement Bridge over 
Ochoco Creek in Prineville
– Single 66’ span by 65’-8” wide 

w/ precast spread box beams
– Performing chloride profile 

testing to determine chloride loading (4 cores from existing structure)
– Performing NT Build 492 tests on representative concrete mix designs 

to evaluate expected deck service life
– Evaluating expected service life



Oregon DOT

• Bridge Deck Evaluation in Various Chloride Exposure 
Zones
– Performed chloride profile testing to determine chloride loading (42 

cores from 12 existing structures)
– Additional structures scheduled to be tested through end of year
– Categorization of chloride loading by geographic/climatic zones   

(Pacific Coast, Willamette Valley, Cascade Mountains and east)



Pennsylvania DOT

• Statewide Evaluation of Chloride Resistance of Concrete
– Contracted with Lehigh University to perform NT Build 492 chloride 

migration coefficient tests on 105 samples from mix designs produced 
by 7 ready mix and 2 precast concrete suppliers in the state



Pennsylvania DOT

• Statewide Evaluation of Chloride Resistance of Concrete
– Tests included standard, high performance (HPC) and self 

consolidating (SCC) concrete mixes
– Tests were performed at 28, 56, and 112 days to evaluate 

effects of age
– Performed evaluation of chloride migration coefficient 

versus concrete mix type, age, w/c ratio, unit weight, 
slump, and strength

– Developed a full probabilistic assessment tool based on 
the fib Bulletin 34 methodology, and evaluated PennDOT
certified mixes for a 100 year life

– Initial indications are that most standard mix designs would 
not satisfy a 100 year life in a salt splash/spray zone



Virginia DOT

Service Environment
• Air Temperature
• Surface Chloride Concentration, Cs

Concrete Mix Properties
• Concrete Initial Chloride 

Concentration, C(x,t=0)

• Chloride Migration Coefficient, D

• Model Corrosion Service Life of a Typical Virginia Bridge 
Deck



Virginia DOT

Virginia’s Goals:

• Consider proposed methods to model for service life 
design

• Demonstrate how models can be used to support 
decision-making in design 

• Develop a database of reference values specific to 
Virginia for use in modeling



Virginia DOT

• Evaluation of Chloride Surface Concentration from De-Icing
– Categorization of chloride loading by zones

– Historical data (Williamson, 2007) (% 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑪𝑪
−

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
)

– fib 34-predicted

0.420
.25

0.72
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0.78
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1.57
0.30

1.33
0.25
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Tidewater
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Virginia DOT

• Evaluation of Chloride Diffusion Properties of Statewide 
Concrete Mix Designs
– Typical Deck mix (A4) – 4,000 psi HPC

• All Virginia DOT concrete mixes contain mineral admixtures 
to reduce permeability

– Variety of source materials statewide
– New low-cracking concrete specification

– NT Build 492 tests performed on 9 current bridge construction 
projects (8 additional bridges to be tested later this year)

– Developed a full-probabilistic analysis tool for evaluation of data



IAP Next Steps

• Conduct Agency Training Workshops
• Develop Reference Material Documentation
• Round 7 Implementation Assistance

– $500,000 in Lead Adopter awards made 
available

– 2 awards for $100,000 each:
• Iowa DOT
• Maine DOT



Future Research

• AASHTO T-9 – Bridge Preservation Technical 
Committee sponsoring NCHRP  Research Project 12-
108 (Pending)

• Uniform Service Life Design Guide Specification
– Conduct Literature Review
– Synthesize Gaps in Current Practice
– Develop a Methodology considering:

• Multiple Analysis Methods
• Deterioration Processes and Exposure Zones and Loads
• Service Life Target Based on Functional Requirements
• Selection of Alternative Designs to Achieve Target Service Life
• Evaluate Effectiveness of Design, Construction, Inspection 

Strategies and Management Practices
– Produce Report and Guide Specification



Summary

• Durability or Service Life Design is:
– A design approach to resist deterioration caused 

by environmental actions
• Design Guides/Codes are available:

– fib Bulletin 34 – Model Code for Service Life 
Design

• Current implementation
– SHRP2 R19A projects (FHWA CFL, IA, OR, PA, 

VA)
• AASHTO T-9 Initiated Research

– NCHRP 12-108 Uniform Service Life Design 
Guide



Questions?

Implementation Leads:
• Patricia Bush, AASHTO Program Manager for 

Engineering, pbush@aashto.org
• Raj Ailaney, FHWA Senior Bridge Engineer, 

Raj.Ailaney@dot.gov
Subject Matter Expert Team:
• Mike Bartholomew, CH2M, 

mike.bartholomew@ch2m.com
• Anne-Marie Langlois, COWI North America, 

amln@cowi.com
Resource: AASHTO’s R19A Product Page
• http://shrp2.transportation.org/Pages/ServiceLifeDesignf

orBridges.aspx

mailto:pbush@aashto.org
mailto:Raj.Ailaney@dot.gov
mailto:mike.bartholomew@ch2m.com
mailto:amln@cowi.com
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