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How is service life currently considered?

• Structural design standards:
– Do not specifically account for service life
– Fail to quantify durability limit states

• Codes and standards as design basis:
– Assumed life is typically 75 years
– Take no account of specific environment
– Take no account of specific material properties
– Make no use of  deterioration models
– No metric to quantify durability
– Knowledge base is 10-30+ years
– "Deemed to satisfy rules"
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Solutions?

• Performance and design requirements that owners and 
designers can use 

• Service life design using a rational probabilistic approach

• Transform subjective concept of "durability" into a actual 
design methods and tools for designers that permit 
optimization of design for service life

4
16 August 2016



fib Bulletin 34 Model Code for 
Service Life Design

• Written and distributed by the 
International Federation of Structural 
Concrete (fib)

• A reliability-based service life design 
methodology for concrete structure
– Similar to Load-Resistance Factor 

Design

• ISO 16204:2012 Service Life Design 
of Concrete Structures
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fib Bulletin 34 Model Code for 
Service Life Design

• 1 of 2 strategies

• Avoidance approach applied for:
– Carbonation-induced corrosion
– Sulfate attack
– DEF
– AAR
– Freeze/thaw degradation

• Full probabilistic approach for:
– Chloride-induced corrosion
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fib Bulletin 34 Model Code for Service Life 
Design Strategy - Probabilistic Analysis

1. Define exposure zones and degradation mechanisms

2. Select limit state

3. Design Parameters
– Materials

– Concrete quality

– Concrete cover

4. Project Specifications

5. Construction  pre-testing and production testing
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Service Life Assessment

1. Define exposure zones and degradation mechanisms
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Assessment (continued)
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2. Select limit state
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Modelling Chloride-Induced 
Corrosion
2. Select limit state

– Depassivation of reinforcement marks end of service life
– Occurs when critical chloride threshold is reached at reinforcement

10
16 August 2016



Modelling Chloride-Induced 
Corrosion
2. Select limit state

– Serviceability limit state:
• 10% probability that corrosion will initiate within the service life
• 90% probability that it will not!
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Modeling Chloride-Induced 
Corrosion

3. Design Parameters
– Depassivation of reinforcement 

marks end of service life
– Fick's 2nd law-based model 

provides time, depth where 
critical chloride threshold 
reached 

– Probabilistic consideration of 
cover thickness (dc), critical 
chloride threshold

– All input are probabilistic 
variables.
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Modeling Chloride-Induced 
Corrosion

• Chloride Ingress – Fick’s 2nd Law of Diffusion 
to Corrosion Initiation

• Red – Environmental Loading
– Co & Cs are the Chloride Background and Surface Concentrations
– Treal is the annual mean Temperature at the project site

• Green – Material Resistance
– DRCM,0 is the Chloride Migration Coefficient, α is the Aging Exponent, 

both are functions of the concrete mix
– a is the Concrete Cover
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Modeling Chloride-Induced 
Corrosion

• Environmental exposure of coastal marine bridges

– Chloride loading (Cs) based on natural salinity of sea water
– Data collected from existing documentation or perform 

salinity tests

• Environmental exposure from de-icing chemicals

– Chloride loading (Cs) much more difficult to assess
– Best source of data is from test coring existing structures 

in similar environment
16 August 2016
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Determining Chloride Loading

• S

– Known as the Salt Ponding Test
– Used to develop chloride profiles in test specimens 

or existing concrete taken from cores
– Results include Surface Chloride Concentration (Cs) 

and Concrete Apparent Coefficient of Diffusion 
(Dapp,C) at age of core

16 August 2016
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Service Life Assessment

3. Design Parameters
4. Input in Project Specification
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Service Life Assessment

5. Construction  Pre-testing and production testing

fib Model Code is based on NT Build 492: Rapid Chloride Migration Test
– measure the migration coefficient of concrete at 28 days
– direct input parameter
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NT Build 492 – Test Setup
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NT Build 492

• Split specimen axially into 2 pieces
• Spray silver nitrate solution on broken surface
• Measure chloride penetration depth
• Calculate Chloride Migration Coefficient, DRCM,0
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Modeling Chloride-Induced 
Corrosion

• Resistance to Chloride Ingress influenced by 
concrete mix proportions:
– Type of Cement
– Water/Cement Ratio
– Supplemental Cementitious Materials

• Fly Ash (FA)
• Ground Granulated Blast Furnace Slag (GGBFS)
• Silica Fume (SF)

– Aggregates

16 August 2016
20



NT Build 492 Test Summary

• Important to perform test at 28 days
• Test takes 24 hours
• One test includes 3 specimens
• Cost of a single test is approximately $1,000
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Concrete Cover Depth

• Lack of U.S. standards for measuring cover 
depth in hardened concrete

• Service Life goal is for complete mapping
– Min/Max Depths
– Used to calculate mean & standard deviations

• International Standard
– British Standard 1881-204:1988 – Testing 

Concrete. Recommendations on the use of 
electromagnetic covermeters
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Covermeters

• Sources: Proceq Elcometer
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Concrete Cover Depth

• FHWA’s Robotic Assisted Bridge Inspection Tool 
(RABIT) with Ground Penetrating Radar (GPR)
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How does this concrete durability study 
affect the structural design?

• Quantifiable requirements for the concrete quality
• Concrete cover
• Type of reinforcing steel
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Design Tools

• SHRP2 R19A: Design tools for fully probabilistic 
model for chloride-induced corrosion
– Excel spreadsheet
– Design charts

16 August 2016 Service Life Design
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Design Tools

• SHRP2 Website:
• http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx
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Design Tools
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Design Tools

16 August 2016 Service Life Design
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Full Probabilistic Tool - Input

Parameter Description Units
Distribution 
Function Mean, μ Std Dev, σ

Coeff of 
Variation, 

σ/μ

in2/yr 0.420 0.084 0.20
mm2/yr 271.0 54.2
m2/sec 8.59E-12 1.72E-12

be Regression variable, (limited to 3500 °K to 5500 °K) °K Normal 4800 700
°F 49.1 12.06
°C 9.5 6.70
°K 282.65 6.70

°F 67.6
°C 19.8
°K 292.9

ke Environmental transfer variable n/a n/a

kt Transfer parameter n/a Constant 1.0
α Aging exponent - All types in atmospheric zone n/a Beta 0.65 0.15
to Reference point of time (28 days = 0.0767 yrs) yrs Constant 0.0767
A(t) Aging function n/a n/a
Co Initial Chloride Content of Concrete mass% of binder Normal 0.10 0.00 0.001

Cs or Cs,Δx

Chloride Concentration at surface, or at substitute 
surface Δx mass% of binder Log-Normal 3.00 1.50 0.50

Standard test temperatureTref Constant

Temperature (from Local Weather Data)Treal Normal

Normal Distr Coefficients

DRCM,0 Normal
Chloride Migration Coefficient (from Nordtest NT 
Build 492 - results are given in m2/sec)
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Monte Carlo Trial Results
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Conclusion

• Scientific approach to quantify service life
– fib Bulletin 34 / Probability-based mathematical 

modelling
– Environmental loads and materials resistances
– Defined durability requirements
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Questions?
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