

Chloride-Induced Corrosion Modeling

August 2016

Anne-Marie Langlois, P.E.

U.S. Department of Transportation Federal Highway Administration AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

- Introduction
- fib Bulletin 34 Model Code for Service Life Design
- Conclusion

How is service life currently considered?

- Structural design standards:
 - Do not specifically account for service life
 - Fail to quantify durability limit states
- Codes and standards as design basis:
 - Assumed life is typically 75 years
 - Take no account of specific environment
 - Take no account of specific material properties
 - Make no use of deterioration models
 - No metric to quantify durability
 - Knowledge base is 10-30+ years
 - "Deemed to satisfy rules"

16 August 2016

- Performance and design requirements that owners and designers can use
- Service life design using a rational probabilistic approach
- Transform subjective concept of "durability" into a actual design methods and tools for designers that permit optimization of design for service life

fib Bulletin 34 Model Code for Service Life Design

- Written and distributed by the International Federation of Structural Concrete (*fib*)
- A reliability-based service life design methodology for concrete structure
 - Similar to Load-Resistance Factor Design
- ISO 16204:2012 Service Life Design
 of Concrete Structures

Model Code for Service Life Design

model code

fib Bulletin 34 Model Code for Service Life Design

- 1 of 2 strategies
- Avoidance approach applied for:
 - Carbonation-induced corrosion
 - Sulfate attack
 - DEF
 - AAR
 - Freeze/thaw degradation
- Full probabilistic approach for:
 - Chloride-induced corrosion

fib Bulletin 34 Model Code for Service Life Design Strategy - Probabilistic Analysis

- 1. Define exposure zones and degradation mechanisms
- 2. Select limit state
- 3. Design Parameters
 - Materials
 - Concrete quality
 - Concrete cover
- 4. Project Specifications
- 5. Construction \rightarrow pre-testing and production testing

Service Life Assessment

1. Define exposure zones and degradation mechanisms

Assessment (continued)

2. Select limit state

- 2. Select limit state
 - Depassivation of reinforcement marks end of service life
 - Occurs when critical chloride threshold is reached at reinforcement

- 2. Select limit state
 - Serviceability limit state:
 - 10% probability that corrosion will initiate within the service life
 - 90% probability that it will not!

- 3. Design Parameters
 - Depassivation of reinforcement marks end of service life
 - Fick's 2nd law-based model provides time, depth where critical chloride threshold reached
 - Probabilistic consideration of cover thickness (d_c), critical chloride threshold
 - All input are probabilistic variables.

 Chloride Ingress – Fick's 2nd Law of Diffusion to Corrosion Initiation

$$\begin{split} C_{\text{crit}} \geq C(x = a, t) &= \mathbf{C_o} + (\mathbf{C_{s,\Delta x}} - \mathbf{C_o}) \cdot \left[1 - \text{erf}\left(\frac{a - \Delta x}{2\sqrt{D_{app,C} \cdot t}}\right)\right] \\ D_{app,C} &= k_e \cdot \mathbf{D_{RCM,0}} \cdot k_t \cdot A(t) \\ k_e &= \exp\left(b_e\left(\frac{1}{T_{\text{ref}}} + \frac{1}{T_{\text{real}}}\right)\right) \\ A(t) &= \left(\frac{t_o}{t}\right)^{\alpha} \end{split}$$

- Red Environmental Loading
 - C_o & C_s are the <u>Chloride Background and Surface Concentrations</u>
 - T_{real} is the annual mean <u>Temperature at the project site</u>
- Green Material Resistance
 - $D_{RCM,0}$ is the <u>Chloride Migration Coefficient</u>, α is the <u>Aging Exponent</u>, both are functions of the concrete mix

16 August 2016 is the Concrete Cover

- Environmental exposure of coastal marine bridges
 - Chloride loading (C_s) based on natural salinity of sea water
 - Data collected from existing documentation or perform salinity tests
- Environmental exposure from de-icing chemicals
 - Chloride loading (C_s) much more difficult to assess
 - Best source of data is from test coring existing structures in similar environment

Determining Chloride Loading

Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding¹

- Known as the Salt Ponding Test
- Used to develop chloride profiles in test specimens or existing concrete taken from cores
- Results include Surface Chloride Concentration (C_s) and Concrete Apparent Coefficient of Diffusion (D_{app,C}) at age of core

Service Life Assessment

- 3. Design Parameters
- 4. Input in Project Specification

4. mput n	r rojeci opecification	Mix 1	Mix 2	Mix 3				
Exposure	Structural Flore ant	Nominal cover	Max. w/cm	Max. mean Chloride Migration Coefficient				
Zone	Structural Element	[in]	[-]	D ₂₈ x 10 ⁻⁹ [in²/s]				
De-icing salt spray	Towers, pier caps, abutments	3.0	0.40	14.1	3.4	4.9		
	Deck			11.3	2.7	4.0		
	Concrete barriers	2.75		12.4	3.4	4.6		
Atmospheric	Towers, pier caps, pier columns	3.0	0.40	15.0	11.0	12.0		
	Towers, pier caps, pier columns	3.0	0.40	15.0	5.1	7.1		
Spiasn	Pile caps	4.0	0.40	15.0	9.9	12.0		
16 August 20 Submerged	2.5	0.40	15.0	5.8	8.3			

Service Life Assessment

5. Construction \rightarrow Pre-testing and production testing

fib Model Code is based on NT Build 492: Rapid Chloride Migration Test

- measure the migration coefficient of concrete at 28 days
- direct input parameter

NT Build 492 – Test Setup

16 August 2016

NT Build 492

- Split specimen axially into 2 pieces
- Spray silver nitrate solution on broken surface
- Measure chloride penetration depth
- Calculate Chloride Migration Coefficient, D_{RCM,0}

Fig. 5. Illustration of measurement for chloride penetration depths.

- Resistance to Chloride Ingress influenced by concrete mix proportions:
 - Type of Cement
 - Water/Cement Ratio
 - Supplemental Cementitious Materials
 - Fly Ash (FA)
 - Ground Granulated Blast Furnace Slag (GGBFS)
 - Silica Fume (SF)
 - Aggregates

NT Build 492 Test Summary

- Important to perform test at 28 days
- Test takes 24 hours
- One test includes 3 specimens
- Cost of a single test is approximately \$1,000

Concrete Cover Depth

- Lack of U.S. standards for measuring cover depth in hardened concrete
- Service Life goal is for complete mapping
 - Min/Max Depths
 - Used to calculate mean & standard deviations
- International Standard
 - British Standard 1881-204:1988 Testing Concrete. Recommendations on the use of electromagnetic covermeters

• Sources: Proceq

Elcometer

• FHWA's <u>Robotic Assisted Bridge Inspection Tool</u> (RABIT) with Ground Penetrating Radar (GPR)

16 August 2016

How does this concrete durability study affect the structural design?

- Quantifiable requirements for the concrete quality
- Concrete cover
- Type of reinforcing steel

- SHRP2 R19A: Design tools for fully probabilistic model for chloride-induced corrosion
 - Excel spreadsheet
 - Design charts

Design Tools

- SHRP2 Website:
- <u>http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx</u>

AASHI	3					FOLLOW US ON:					
About AASHTO Bo	okstore Software	Meetings	Committees	Programs	Newsroom	Employment					
AASH	गठ 🔪	А	SHR	P25 T00	OLUT LS FOR THE	TOAD AHEAD					
SHRP 2	Service Life Design for E	bridges									
• Home	AASHTO > Strategic Highway	🚔 🖂 🗾 f									
 Implementation Assistance Upcoming Events 	SERVICE LIFE DESIGN FOR BRIDGES (R19A)										
 SHRP2 Presentations 	Product Overview										
Products by Focus Area Products by Topic Area News and Videos	Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document										
	Presentations and V	/ebinars									
Need More Information? Pamela Hutton SHRP2 Implementation Mgr	 Concept Overview presentation: Durability Design Structure Birth Certificate Product Detail presentation: Integrating Durability and Structural Design Service Life Design for Bridges Progress Update Webinar 										
303-263-1212	Tools and Technolog	jies									
	Reports Durability Assessment Design Tools	t of a Bridge Substruc	ture (R19A)								

SERVICE LIFE DESIGN - GRAPHICAL SOLUTION

Calculations as per fib Bulletin 34 - fully probabilistic design Service Life = 100 years Beta = 1.3, Probability of failure = 10% Critical chloride concentration: black bars - 0.6%cem. Initial chloride concentration : 0.1%cem.

Temperature: mean = 49.1F, std = 12.1F Exposure Zones: Buried/Submerged Concrete Type: OPC + >20%FA

SERVICE LIFE DESIGN - GRAPHICAL SOLUTION

Calculations as per fib Bulletin 34 - fully probabilistic design Service Life = 100 years Beta = 1.3, Probability of failure = 10% Critical chloride concentration: black bars - 0.6%cem. Initial chloride concentration : 0.1%cem.

Temperature: mean = 49.1F, std = 12.1F Exposure Zones: Buried/Submerged Concrete Type: OPC + >20%FA

Full Probabilistic Tool - Input

				Normal Distr Coefficient			
						Coeff of	
			Distribution			Variation,	
Parameter	Description	Units	Function	Mean, µ	Std Dev, σ	σ/μ	
		in²/yr		0.420	0.084	0.20	
	Chloride Migration Coefficient (from Nordtest NT	mm²/yr		271.0	54.2		
D _{RCM,0}	Build 492 - results are given in m ² /sec)	m²/sec	Normal	8.59E-12	1.72E-12		
b _e	Regression variable, (limited to 3500 °K to 5500 °K)	°К	Normal	4800	700		
		°F		49.1	12.06		
		°C		9.5	6.70		
T _{real}	Temperature (from Local Weather Data)	°К	Normal	282.65	6.70		
		°F		67.6			
		°C		19.8			
T _{ref}	Standard test temperature	°К	Constant	292.9			
k _e	Environmental transfer variable	n/a	n/a				
k _t	Transfer parameter	n/a	Constant	1.0			
α	Aging exponent - All types in atmospheric zone	n/a	Beta	0.65	0.15		
t _o	Reference point of time (28 days = 0.0767 yrs)	yrs	Constant	0.0767			
A(t)	Aging function	n/a	n/a				
Co	Initial Chloride Content of Concrete	mass% of binder	Normal	0.10	0.00	0.001	
16 Au	IgNsti2016 ncentration at surface, or at substitute					30	
$C_{s} \text{ or } C_{s,\Delta x}$	surface Δx	mass% of binder	Log-Normal	3.00	1.50	0.50	

Monte Carlo Trial Results

Trial Resu	ults of Ra	ndomly	Generat	ed Valu	ies of Inp	out Para	ameter	s to Fic	k's 2nd	Law							
											3	C _{crit} (m		iss% of			
	D _{RCM,0} (n	nm²/yr)	b _e (*	°К)	T _{real} ((°K)	k _e		ι	A(t _{st})	<u>(</u>	cover	(mm)	binder)		C(x=cov,t _{sL})	Pass (1)
Trial	rand 0-1	RESULT	rand 0-1	RESULT	rand 0-1	RESULT		rand 0-1	RESULT			<u>çand 0-1</u>	RESULT	rand 0-1	RESULT	RESULT	/Fail (0)
1	0.392	256.08	0.117	3967	0.918	292.0	1.0	0.921	0.853	0.0022	5	0.528	50.9	0.788	0.716	0.10	1
2	0.924	348.42	0.607	4990	0.690	286.0	0.7	0.236	0.541	0.0207		0.411	49.0	0.372	0.538	0.46	1
3	0.547	277.42	0.325	4482	0.682	285.8	0.7	0.473	0.650	0.0094		0.005	36.5	0.666	0.654	0.55	1
4	0.510	272.31	0.118	3970	0.025	269.5	0.3	0.094	0.439	0.0430	\geq	0.432	49.3	0.240	0.486	0.27	1
5	0.422	260.27	0.379	4585	0.203	277.1	0.4	0.757	0.766	0.0041	1.	0.172	44.8	0.517	0.592	0.10	1
6	0.995	412.47	0.158	4099	0.160	276.0	0.4	0.935	0.864	0.0020		0.520	50.7	0.623	0.635	0.10	1
7	0.965	369.00	0.104	3920	0.320	279.5	0.5	0.398	0.619	0.0118		0.336	47.8	0.511	0.590	0.15	1
8	0.654	292.43	0.844	5500	0.626	284.8	0.6	0.102	0.447	0.0406		0.782	55.5	0.296	0.509	0.71	0
·	0.899	340.12	0.979	and the second	0.223	277.5	<u>م ۸</u> 4	0.136	475	0.0330		266	46,6	0.112	0,424		Q
				-		V											
4999	0.892	338.07	~~~ <u>0.897</u>	5500	0.238	277.9	0.4	0.610	0.705	Ó.		0.116	43.4	0.279	0.502	0.10	1
5000	0.911	344.10	0.347	4524	0.702	286.2	0.7	0.865	0.819	0.00.	4	0.805	56.1	0.669	0.655	0.10	1
											Σ						
SUMMARY											- {						
											1	\					
Computed M	Mean	270.47		4740		282.6	0.6		0.65	0.07	2		50.76		0.60		
Input Mean	n	270.97		4800		282.7			0.65			•	50.80		0.60		
										3	i é						
Max		469.64		5500		309.08	2.41		1.00	Q.	1)	76.30		1.21		
Min		92.56		3500		259.46	0.10		0.09	0.0,	1	_	32.65		0.24		
											ŀ .	5					
										5	- (Total Pas	sing		4526		
												(Total # of Trials		5000			
											\leq	Reliabilit	у		0.91		
16 August 2016							- 5	ेत	P, Probab	ility of fai	lure	0.09					
10 August 2010											β, Reliabi	lity Index	(calculate	1.312	Passes	31	
										$ \geq $), Target I	Reliability	Index	1.3			

- Scientific approach to quantify service life
 - fib Bulletin 34 / Probability-based mathematical modelling
 - Environmental loads and materials resistances
 - Defined durability requirements

Questions?

Patricia Bush AASHTO Program Manager for Engineering phutton@aashto.org

Mike Bartholomew CH2M mike.bartholomew@ch2m.com

Anne-Marie Langlois

COWI North America amln@cowi.com

AASHTO SHRP2 R19A Website:

http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

FHWA GoSHRP2 Website:

www.fhwa.dot.gov/GoSHRP2/