

Implementing Service Life Design Using the fib Bulletin 34 Methodology

October 2017

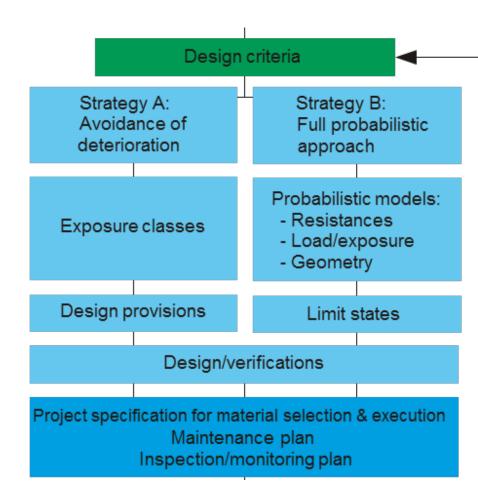
Anne-Marie Langlois, P.E.

U.S. Department of Transportation Federal Highway Administration AMERICAN ASSOCIATION of State Highway and Transportation Officials

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

fib Bulletin 34 Model Code for Service Life Design

- Written and distributed by the International Federation of Structural Concrete (*fib*)
- A reliability-based service life design methodology for concrete structure
 - Similar to Load-Resistance Factor Design
- ISO 16204:2012 Service Life Design
 of Concrete Structures

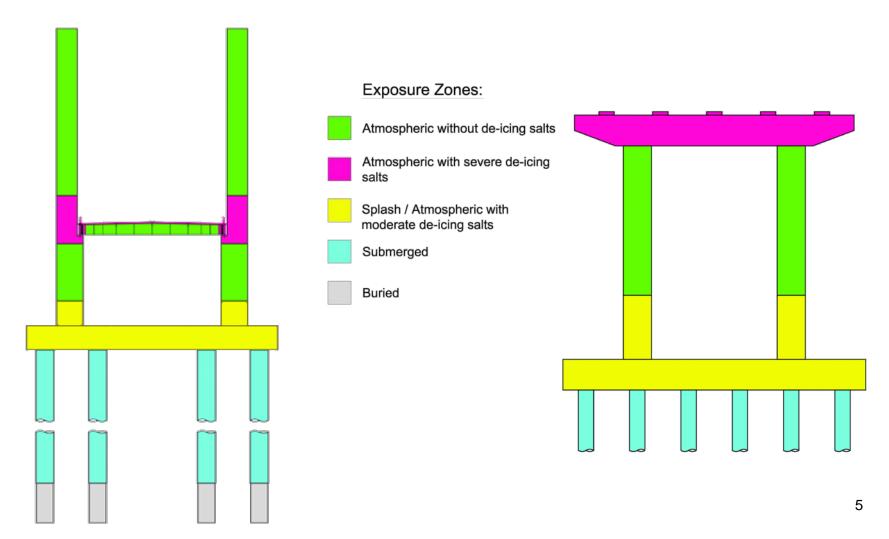


Model Code for Service Life Design

model code

fib Bulletin 34 Model Code for Service Life Design

- All degradation mechanism addressed with 1 of 2 strategies
- Avoidance approach applied for:
 - Carbonation-induced corrosion
 - Sulfate attack
 - DEF
 - AAR
 - Freeze/thaw degradation
- Full probabilistic approach for:
 - Chloride-induced corrosion



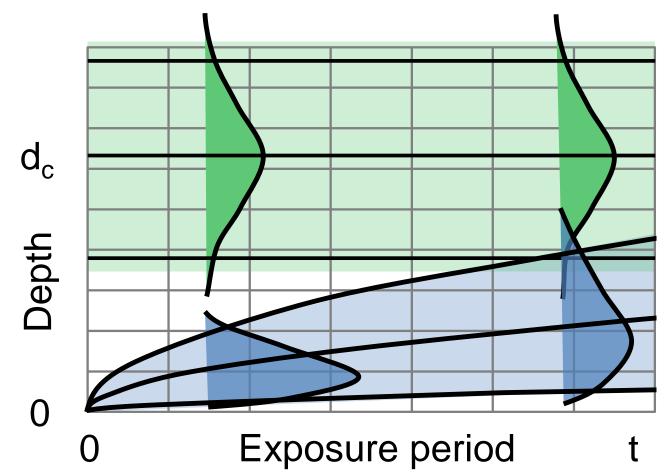
fib Bulletin 34 Model Code for Service Life Design Strategy - Probabilistic Analysis

- 1. Define exposure zones and degradation mechanisms
- 2. Select limit state
- 3. Design Parameters
 - Materials
 - Concrete quality
 - Concrete cover
- 4. Project Specifications

5. Construction \rightarrow pre-testing and production testing

1. Define exposure zones and degradation mechanisms

- 1. Define exposure zones and degradation mechanisms
 - Temperature
 - Extent of splay/spray zone?
 - Chloride surface concentrations?
 - Data should be gathered:
 - water (chlorides, sulfates, pH)
 - soil (chlorides, sulfates, pH)

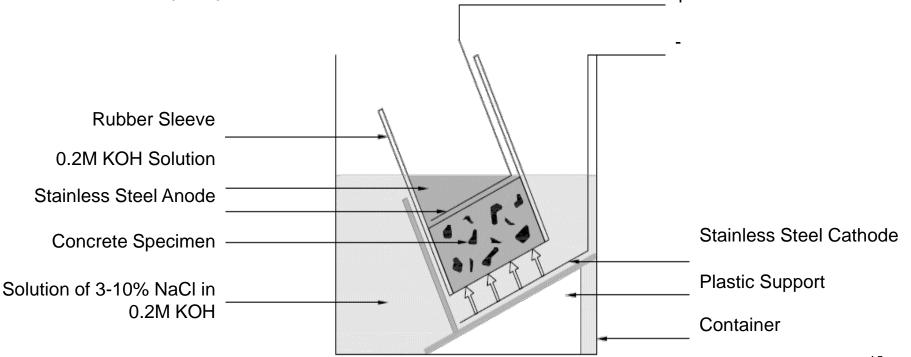

Modelling Chloride-induced Corrosion

2. Select limit state

- Depassivation of reinforcement marks end of service life
- Occurs when critical chloride threshold is reached at reinforcement
- Serviceability limit state:
 - 10% probability that corrosion will initiate within the service life
 - 90% probability that it will not!

Modeling Chloride-induced Corrosion

3. Design Parameters


- 3. Design Parameters
- 4. Input in Project Specification

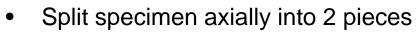
4. Input in	Input in Project Specification			Mix 1	Mix 2	Mix 3
Exposure	Structural Element	Nominal cover	Max. w/cm	Max. mean Chloride Migration Coefficient		
Zone		[in]	[-]	D ₂₈ x 10 ⁻⁹ [in ² /s]		
De-icing salt spray	Towers, pier caps, abutments	3.0	0.40	14.1	3.4	4.9
	Deck			11.3	2.7	4.0
	Concrete barriers	2.75		12.4	3.4	4.6
Atmospheric	Towers, pier caps, pier columns	3.0	0.40	15.0	11.0	12.0
Splash	Towers, pier caps, pier columns	3.0	0.40	15.0	5.1	7.1
	Pile caps	4.0			9.9	12.0
Submerged	Concrete plug for piles	2.5	0.40	15.0	5.8	8.3

5. Construction \rightarrow Pre-testing and production testing

fib Model Code is based on NT Build 492: Rapid Chloride Migration Test

- measure the migration coefficient of concrete at 28 days
- direct input parameter

NT Build 492 – Test Setup


NTBuild 492 - Testing

NT Build 492

- Spray silver nitrate solution on broken surface
- Measure chloride penetration depth
- Calculate Chloride Migration Coefficient, D_{RCM,0}

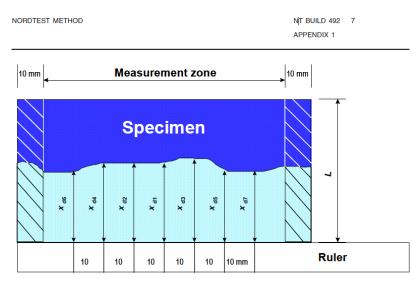


Fig. 5. Illustration of measurement for chloride penetration depths.

NT Build 492 Test Summary

- Important to perform test at 28 days
- Test usually takes 24 hours
- One test includes 3 specimens
- Cost of a single test is approximately \$1,000+
- Note: specify the test frequency wanted during construction

Design Tools

- SHRP2 Website:
- <u>http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx</u>

AASHI	5	FOLLOW US ON:					
About AASHTO Bo	okstore Software Meetings Committees Programs Newsroom	n Employment					
AASH		TIONS					
SHRP 2	Service Life Design for Bridges						
• Home	AASHTO > Strategic Highway Research Program 2 > Service Life Design for Bridges	🖨 🖂 🗾 f					
 Implementation Assistance Upcoming Events 	SERVICE LIFE DESIGN FOR BRIDGES (R19A)						
SHRP2 Presentations	Product Overview						
 Products by Focus Area Products by Topic Area 	Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document						
News and Videos	SHKP2 Service Life Design Guide For Bridges Document Presentations and Webinars						
Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Concept Overview presentation: Durability Design Structure Birth Certificate Product Detail presentation: Integrating Durability and Structural Design Service Life Design for Bridges Progress Update Webinar						
303-263-1212	Tools and Technologies						
4	Reports						
	Durability Assessment of a Bridge Substructure (R19A)						
	Design Tools						

- Scientific approach to quantify service life
- fib Bulletin 34 / Probability-based mathematical modelling
- Environmental loads and materials resistances
- Defined durability requirements
- Specifications shall be developed considering applicable deterioration mechanisms, available materials, and work methods

- New NY (Tappan Zee) Bridge
 - 100 year service life

.....

• Abraham Lincoln Bridge (KY-IN)

- 100 year service life

North Commuter and Traffic Bridge Replacement Project, SK, Canada

75 year service life

Anne-Marie Langlois COWI North America amln@cowi.com

Mike Bartholomew CH2M mike.bartholomew@ch2m.com

Patricia Bush AASHTO Program Manager for Engineering phutton@aashto.org

AASHTO SHRP2 R19A Website:

http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

FHWA GoSHRP2 Website:

www.fhwa.dot.gov/GoSHRP2/