Pavement Density Profiler

Outline

- Who is Sensors & Software
- Some history
- Key aspects of GPR measurement
- Illustration of device
- Example Results
- Summary

Sensors & Software

- Principals pioneered GPR in 1970's
- Sensors & Software formed 30 years ago
- Focus on high performance instruments
- Combine hardware and software to deliver practical solutions

1972 - Apollo 17 Surface Electric Properties

Copyright 2018, Sensors & Software

Copyright 2010, Sensors & Software

Pavement Assessment History

- Started development in about 2000
- Developed high speed ground coupled GPR – RoadMap
- Have looked at surface reflection for several applications

GPR Concepts

Air Launch based on Surface Reflection

Air launched GPR

Surface Reflection for Soil Moisture ~ 2002

Sensors & Software

Pavement Permittivity Estimate (RoadMap ~2008)

Copyright 2017

Pave Density Profiler - PDP

- Recent interest in pavement density measurement
- Based on our prior work, decided to make a practical tool
- Started about 1 year ago
- Goal today is to demonstrate the

GPR Solutions – 3 elements

- Instrumentation
- Electrical structure model
- Translation to application need

PDP based on Surface Reflection

Role of Instrumentation

- The instrumentation is focused on data acquisition
- Must acquire calibrated signal.
- Must acquire data with time and amplitude fidelity

Raw data example

Amplitude Fidelity

Antenna Output Voltage

Calibration & Validation

Instrument summary

- Should produce calibrated data
- Should not need in-field calibration
- Should have in-field performance assessment protocol
- Should be simple to use
- Must enable user to focus on the problem to be solved

Role of "Model"

- GPR signals must be transformed to model
- Model best representation of the structure that explains the GPR data
- Contains geometrical and physical property parameters

PDP based on Surface Reflection

Surface reflection model

Parameters:

- Surface roughness
- Vertical layering
- Horizontal changes
- Electrical properties
 - Permittivity
 - Conductivity
 - Permeability
- System
 - Height
 - T-R separation
 - Orientation

Most simple model

Parameters:

- Surface roughness
- Vertical layering
- Horizontal changes
- Electrical properties
 - Only Permittivity
 - Conductivity
 - Permeability
- System
 - Height
 - T-R separation
 - Orientation

Permittivity Estimation

PDP Raw Reflection Coefficient Data

Effective Permittivity

Model Summary

- Model can be very complex or simple
- Need for complexity?
- Must understand when is the model practical
- What level of complexity is really present?
- Can we handle the complexity?

Translation to application

- Goal is to estimate pavement density or void content
- Research has demonstrated that permittivity and density correlated
- Must not confuse instrument problems with model in this discussion

Definitions Density or Void

- Density -%MRD = G_{mb} x100/ G_{mm}
- $V_a(\%) = \left(1 \frac{G_{mb}}{G_{mm}}\right) * 100$
- Void void % =
- Note to add clarification of terms
- Translate permittivity to density

Empirical

Measure core sample and permittivity and develop relationship

$$V_a(\%) = a * e^{-b * k_r}$$

Mixing Relationship

$$G_{mb} = \frac{\frac{\varepsilon_{AC} - \varepsilon_b}{3\varepsilon_{AC} - 2.3\varepsilon_b} - \frac{1 - \varepsilon_b}{1 - 2.3\varepsilon_b + 2\varepsilon_{AC}}}{\left(\frac{\varepsilon_S - \varepsilon_b}{\varepsilon_S - 2.3\varepsilon_b + 2\varepsilon_{AC}}\right) \left(\frac{1 - P_b}{G_{Se}}\right) - \left(\frac{1 - \varepsilon_b}{1 - 2.3\varepsilon_b + 2\varepsilon_{AC}}\right) \left(\frac{1}{G_{mm}}\right)}$$

$$(10)$$

where,

 $\varepsilon_{\rm AC}$: pavement dielectric permittivity (k) – input from GPR measurements

 G_{mb} : bulk specific gravity of asphalt mixture which is equal to density (ρ) of the material in g/cm³

 ε_s : dielectric constant of the aggregate (~6-8 for limestone, ~4-7 for granite)

 ε_b : dielectric permittivity of the binder

 P_b : asphalt binder weight content

 G_{mm} : maximum specific gravity of the asphalt mixture (no air)

 G_{se} : effective specific gravity of aggregate

Qadi-Lahouar-Leng (ALL) model tuned Bottcher model - Leng et al 2011

Permittivity to Density

- Concept well understood
- Research confirms efficacy
- K to ρ is a distinct step
- Do not mix system calibration and model simplifications with K to ρ relationship
- Must keep the aspects separate.

The PDP Solution

Copyright 2017

Instrument Design

- Instrument calibrated at factory
- No need for user to adjust GPR
- Model of various complexity embedded
- Empirical or mixing model embedded
- Integrated positioning
- Total wifi control
- Simple to use

Normal user interface

Select parameter to display

Set permittivy-density parameters

Summary

- Have outlined the core principles
- Current state and needs still poorly defined
- Pre-production instrument works
- Optimization needs more understanding of workflow and use cases

See instrument demo

- Get a hands on look
- See how unit functions
- Give feedback on users needs
- Kick the tires
- Its really easy to use

Thank you for attending!

Copyright 2017