

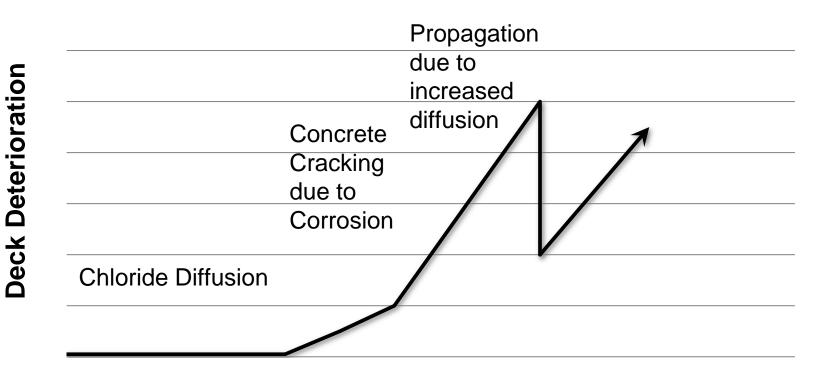
Service Life of Bridge Decks Influence of Cracks

Virginia DOT Workshop – Charlottesville, VA

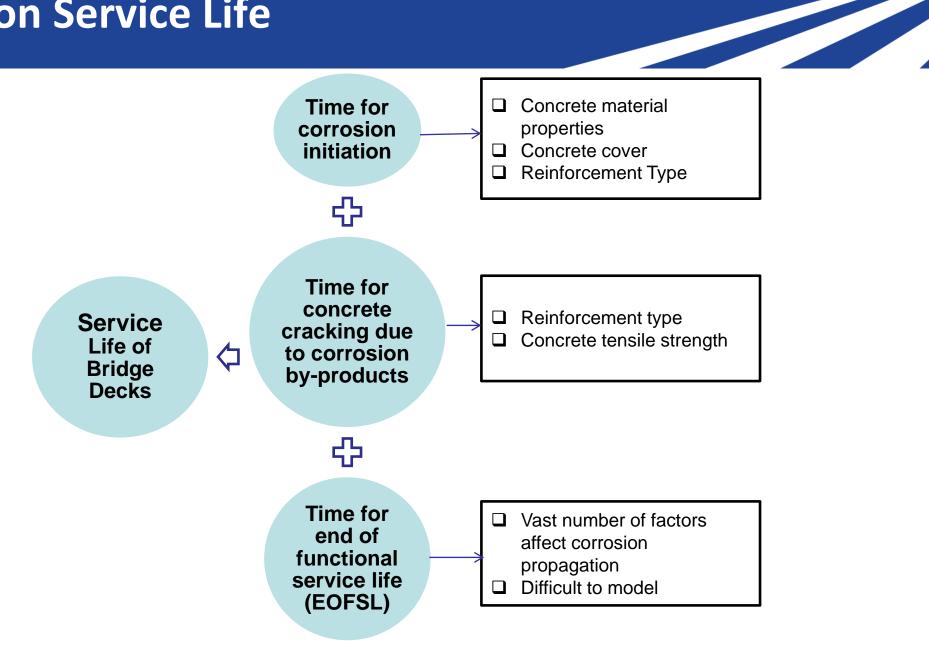
Soundar Balakumaran, Ph.D., P.E. Research Scientist

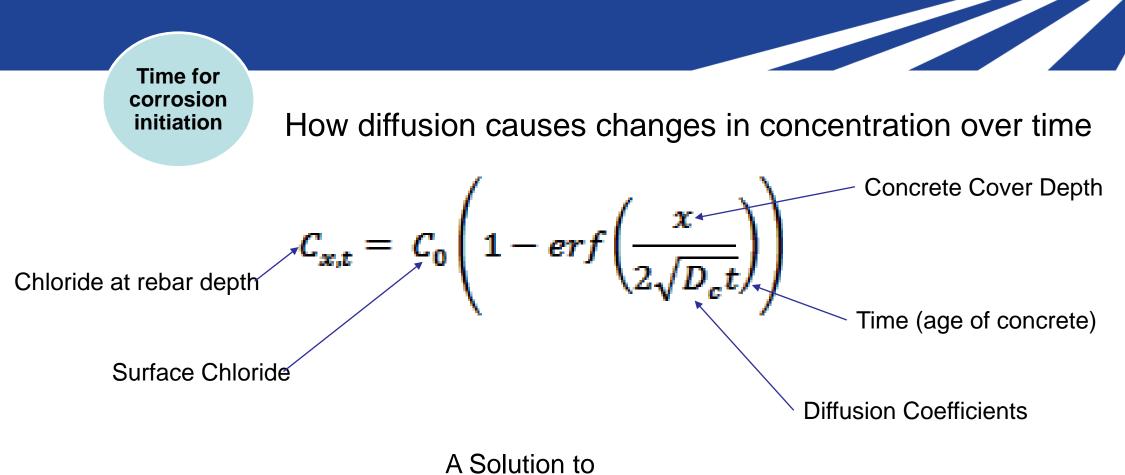
VTRC

October 4, 2017



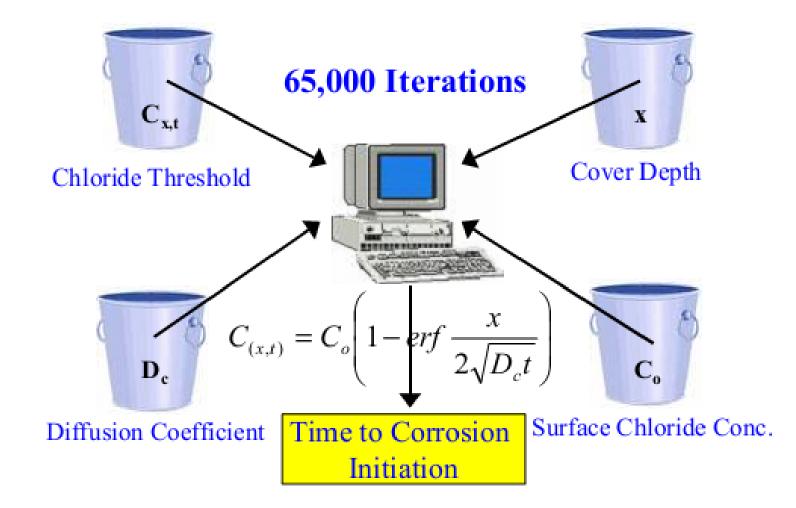
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

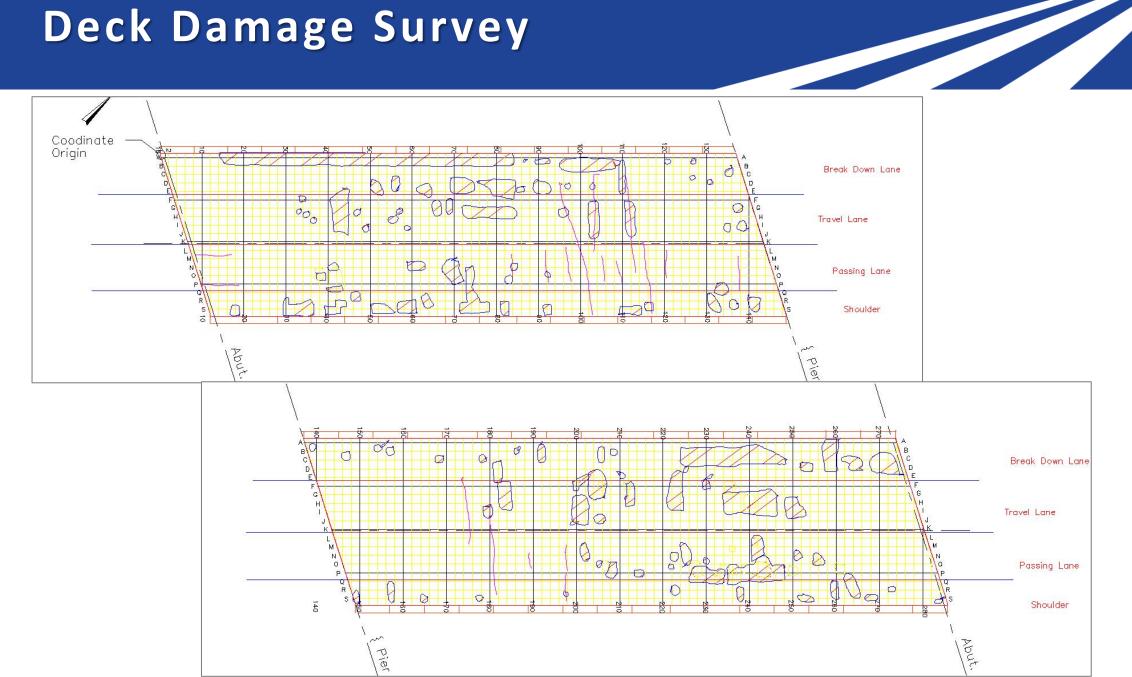

Bridge Deck Damage Curve



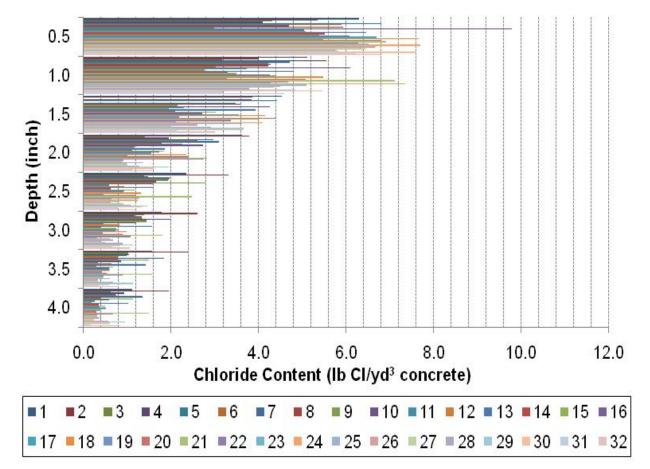
Time

Corrosion Service Life




Fick's Second Law

Service Life Routine


Deck Damage Survey

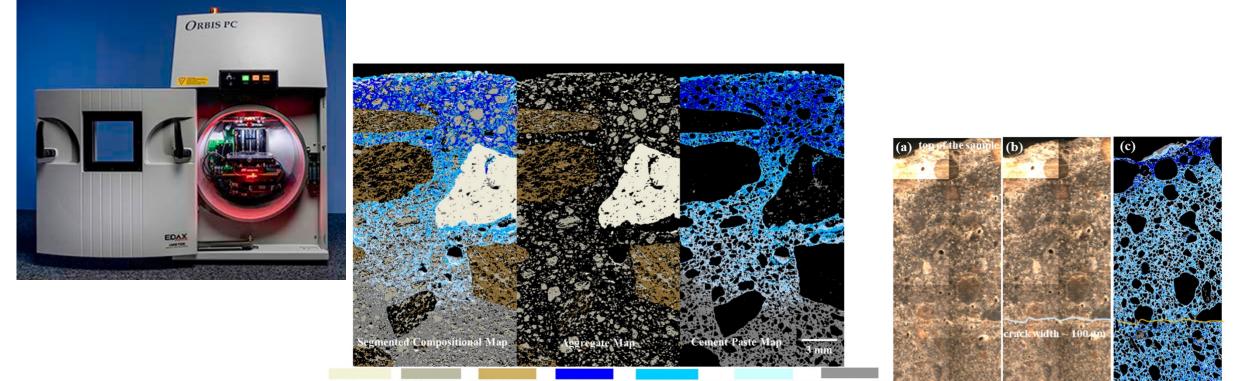
Chloride in Concrete

Many ways to characterize chloride diffusion in concrete:

- Diffusion Coefficient (rate of diffusion)
 - Amount of Chloride in Concrete (ASTM C1152, AASHTO T260)
- Rapid Chloride Permeability (ASTM C1202, AASHTO T277)
- Chloride Migration Coefficients (NordTest Build 492)

Determination of Chloride content

Sampling of concrete for chloride content determination


Acid-Soluble Chloride Titration

Acid-soluble chloride titration (ASTM C1152, AASHTO T260)

Chloride content in % per mass of concrete

Micro X-ray Fluorescence Technique

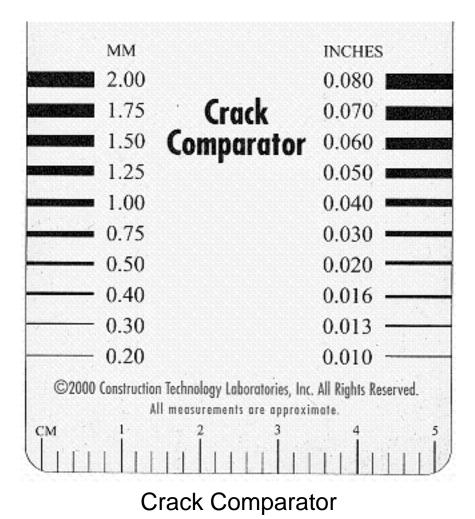
Ca-rich aggregate Si-rich aggregate Al & K-rich aggregate Paste: Cl > 5K ppm Paste: 3K < Cl < 5K ppm Paste: 0.3K < Cl < 3K ppm Paste: Cl < 300 pp

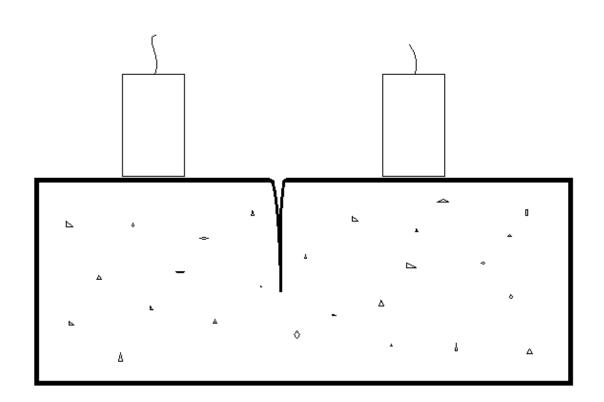
optical image cracks pattern

chlorine map

- Cracking of concrete remains an inevitable problem and can be expensive to repair.

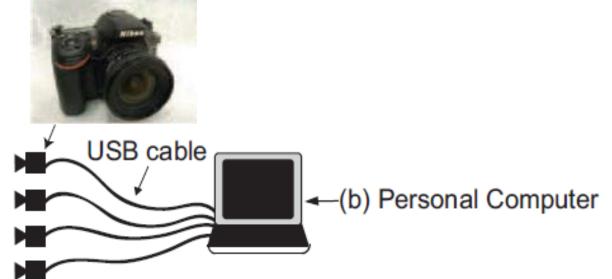
• What is the influence of concrete cracking on the service life of bridge decks?


• Cracks form when stresses exceed tensile strength of concrete.


Classification

- By Shape
 - Linear cracks
 - Pattern cracks
- By Origin
 - Plastic shrinkage cracks
 - Drying shrinkage cracks
 - Settlement cracks
 - Structural cracks
- By Activity
 - Active cracks
 - Passive cracks

Crack Survey Techniques



Ultrasonic Pulse Velocity – Indirect Configuration

Crack Survey Techniques

Virginia Tech OJOS system

0.008 inch (0.2 mm) maximum resolution at 5 mph

Evaluation of Bridge Decks

• Thirty seven bare bridge decks were selected.

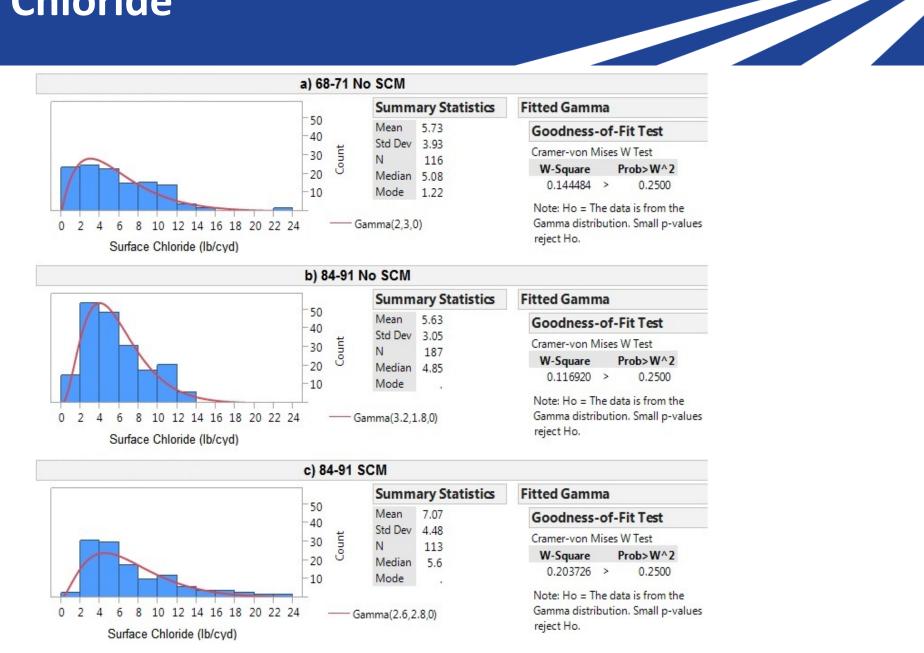
Groups	1968-71	1984-91	1984-91
Number	10	16	11
Concrete	Plain	Plain	SCM
w/c ratio	0.47	0.45	0.45
Rebar	Black	Ероху	Ероху

• Crack survey, damage survey, and core sampling in 2003

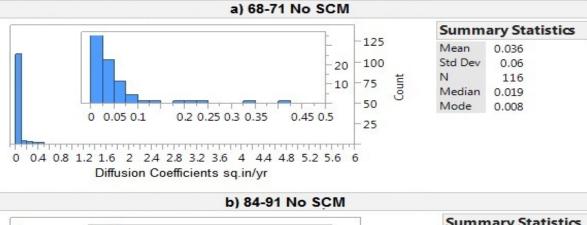
Damage Survey

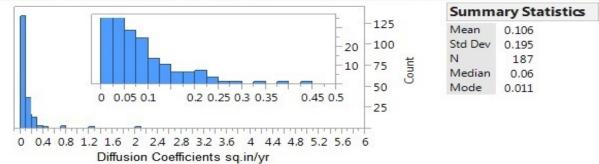
- Damage survey showed almost no damage (<0.5%)
- Length of linear cracks and widths were measured in the field
- Crack depths measured from the cores in the lab

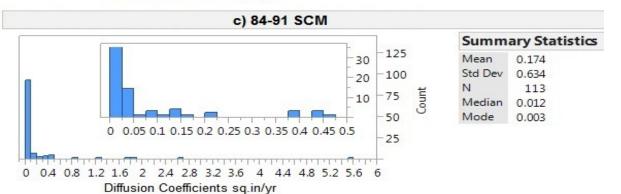
	MM		INCHES
	2.00		0.080
	1.75	Crack	0.070
	1.50	Comparator	0.060
	1.25	•	0.050
	1.00		0.040
1	0.75		0.030
	0.50		0.020
	0.40		0.016
<u>.</u>	0.30		0.013
	0.20		0.010
©2000		chnology Laboratories, Inc easurements are approxi	
ÇM	1.	2 3	4 . 5
JIT.		1 1 1 1 1 1	III IIII

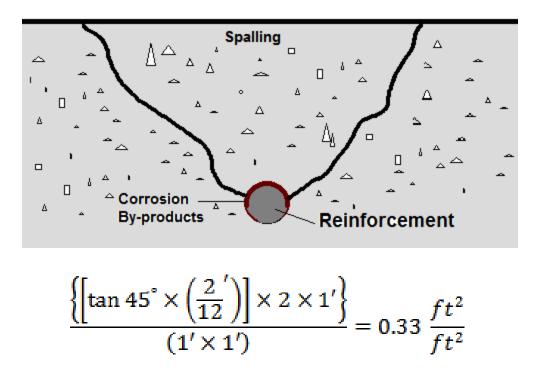

Concrete Material Properties

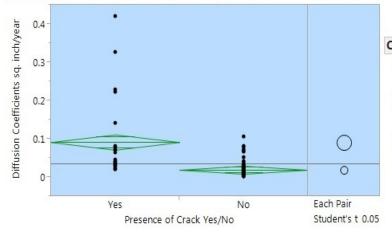
te Ma	aterial P	roperti	es
Groups	68-71 w/c=0.47 No SCM	84-91 w/c=0.45 No SCM	84-91 w/cm=0.45 SCM
		ity (Coulombs)	
Mean	3766	4793	1361
Std. Dev.	1979	2257	817
Median	3455	5144	1091
C.V.	53%	47%	60%
	Pore	Space (%)	
Mean	12.7	15.3	13.9
Std. Dev.	1.49	3.9	1.2
Median	12.5	14.7	14
C.V.	12%	25%	9%
	Concrete	Saturation (%)	
Mean	65	68	76
Std. Dev.	9	6.9	4.1
Median	66	68	75
C.V.	14%	10.1%	5.4%


Cover Depth




Surface Chloride

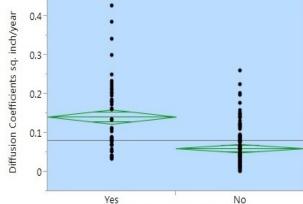

Diffusion Coefficients


Crack Influence

Thus, 1 ft/ft² crack frequency influences 33.3% of one square foot of deck area.

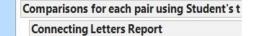
Chloride Diffusion at Cracked Locations

a)Oneway Analysis of Diffusion Coefficients sq. inch/year By Presence of Crack Yes/No


Comparisons for each pair using Student's t

Connecting Letters Report

Levels not connected by same letter are significantly different.


Presence of Crack Yes/No

b) Oneway Analysis of Diffusion Coefficients sq. inch/year By Presence of Crack Yes/No

Ο

0

Each Pair Student's t 0.05

Levels not connected by same letter are significantly different.

Presence of Crack Yes/No

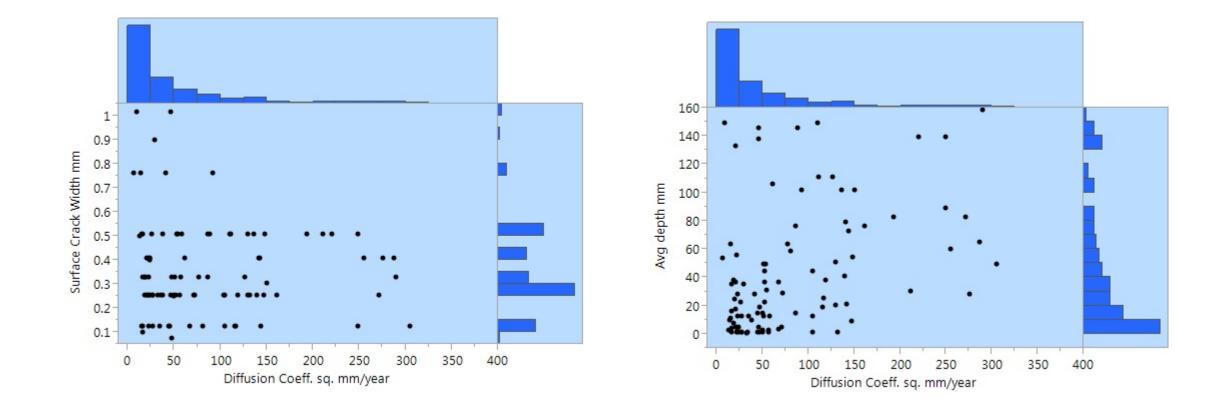
No

0

Yes

Comparisons for each pair using Student's t

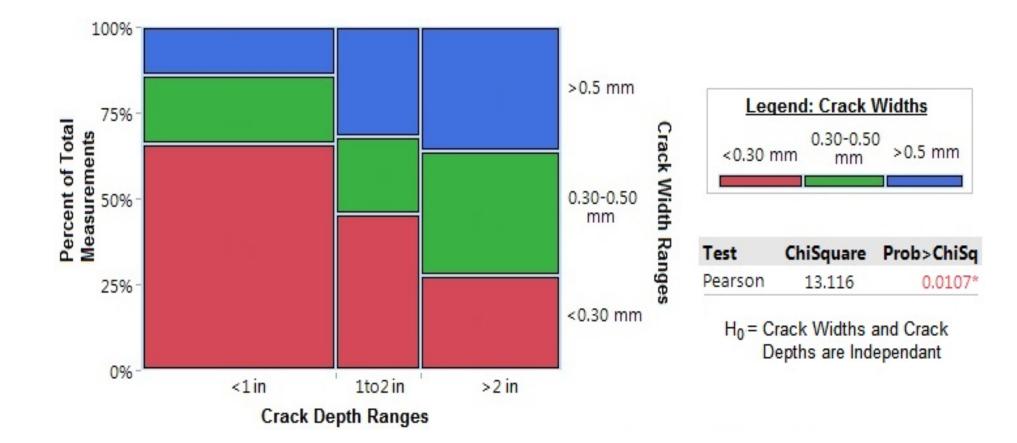
Connecting Letters Report


Mean 0.135 Α 0.014 Levels not connected by same letter are significantly different.

0

Student's t 0.05

Each Pair


Crack Widths & Depths vs. Chloride Diffusion

Crack Width Threshold

AASHTO 7 th Edition	0.017 inch	0.43 mm
Mangat (1987)	0.008 inch	0.2 mm
NCHRP 380 (1996)	As narrow as 0.002 inch	0.05 mm
Xi et al (2003)	0.004 to 0.008 inch	0.1 to 0.2 mm
Ismail et al (2008)	0.002 inch	0.06 mm

Crack Width vs Depth

Classification of Diffusion

		of Diffus	SIGH	Creek Infly	unneed Deel	Area and N		
Cracked/ Uncracked	Crack Frequency	Diffusion at Cracks		m No-SCM ears)	0.45 w/cr	n No-SCM ars)		SCM (years)
			Freq, #	D _c in²/yr	Freq, #	D _c in²/yr	Freq, #	D _c in²/yr
		Low Diffusion		0.020 – 0.022		0.033 – 0.037		0.009 – 0.023
Cracked	Low Frequency	Median Diffusion	2%, 2 0.0 0.3	0.042 – 0.045	3%, 4	0.110 – 0.136	3%, 3	0.081 – 0.095
		High Diffusion		0.327 – 0.420		0.386 – 1.297		1.748 – 2.651
		Low Diffusion		0.020 – 0.029		0.033 – 0.078		0.009 – 0.025
Cracked	Median Frequency	Median Diffusion	5%, 5	0.042 – 0.071	9%, 14	0.084 – 0.172	7%, 6	0.050 – 0.119
		High Diffusion		0.143 – 0.420		0.202 – 1.297		0.450 – 2.651
		Low Diffusion		0.020 – 0.073		0.033 – 0.386		0.009 — 0.059)
Cracked	High Frequency	Median Diffusion	16%, 17	0.029 – 0.143	25%, 46	0.036 – 0.428	15%, 14	0.031 – 0.202
		High Diffusion		0.037 – 0.420		0.037 – 1.297		0.126 – 2.651
Uncracked			91	0.0015 – 0.186	137	0.0015 – 0.741	80	0.0015 – 0.897

Service Life Model Program

daa life Febineatien aven										
SLE R	esults Diffusion Coefficie	ents					9 · (·) -			P
Cover Depths, X (inch) 2.15 2.50 2.05 1.80 2.10 1.95 2.20 2.60 1.90 2.40 1.45 2.25	Diffusion Coefficients, Dc (sq. inch/year) 0.051 0.034 0.054 0.030 0.034 0.037 0.057 0.057 0.044 0.053 0.044 0.053 0.035 0.081	Surface Ch Co (lb/ 15.08 9.10 7.57 11.13 12.28 9.83 5.17 7.21 5.15 10.08 7.13 13.40		Unit System Metric System Iteration Times Deterioration % at EFSL End of Ir	00 -	Paste V Clipt	ome Insert Cut Copy Format Painter board 31 B	Page Layout Formu Calibri • 11 • B I U • Calibri •		E F Estimated Time Due to Deterioration Bare 52 Time to 2% Initiation (years) 16 Propagation Time (Years) 15 Total Time for 12% Damage (Years) 37
			*	Sample	and	8	4	24		Total Time tol 12/0 Damage (Teals)
4 Þ	4 1	4	•	Estima		9	8	41		Estimated Time Due to Diffusion
						10	12 20	53 80		Bare St Time for Diffusion (0% to 12%) (Years 53
56	29		30			12	50	217		Time to Crack (Years) 6
95						13				Total Time for 12% Damage (Years) 59
Initiation Concentration	Triangular		riangular - Max - Mode	Normal Mean - SD	Cracking Time (Years)	14 15 16 17 18 60		tion and Deterior	ations	Service Life Curve
Bare Steel	Min - Max - Mode 0.39 - 6.26 - 1.40				6	19				
 Bare Steel Calcium Nitrite 	Min - Max - Mode				6	19 20 50				
	Min - Max - Mode 0.39 - 6.26 - 1.40	 Min - 0 0.6 	4.0 1.3			19 20 50				
Calcium Nitrite	Min - Max - Mode 0.39 - 6.26 - 1.40 7.50 - 16.0 - 12.50		4.0 1.3		6	19 50 21 80 22 10 23 10 24 10 25 80				
Calcium Nitrite	Min - Max - Mode 0.39 - 6.26 - 1.40 7.50 - 16.0 - 12.50 0.39 - 6.26 - 1.40 	 0.6 	4.0 1.3		6	19 20 50 21 7 22 10 23 10 24 10 25 20 26 27	, <u> </u>			
Calcium Nitrite Calcov Coated Galvanized	Min - Max - Mode 0.39 - 6.26 - 1.40 7.50 - 16.0 - 12.50 0.39 - 6.26 - 1.40 0.98 - 15.65 - 3.50	 0.6 0.6 	4.0 1.3		6 11 6	19 20 50 21 30 22 10 23 10 24 10 25 30 26 40	, <u> </u>			

Service Life of Uncracked Concrete

Groups	0.47 w/cm No SCM	0.45 w/cm No SCM	0.45 w/cm SCM
	Uncracked (years)	Uncracked (years)	Uncracked (years)
Time for corrosion initiation (0% to 2% Deck Damage)	16	8	28
Time for Diffusion (0% to 12% Deck Damage)	47	20	105

Time to Corrosion Initiation – Uncoated Bars

Degree of Crack Frequencies	Category	68-71, 0.47 w/c, no SCM	84-91, 0.45 w/c, no SCM	84-91, 0.45 w/c, SCM
Uncracked	Uncracked	15	8	28
	Low Diffusion	15	8	28
Low Frequency	Median Diffusion	14	8	19
	High Diffusion	10	6	4
	Low Diffusion	15	8	28
Median Frequency	Median Diffusion	13	7	16
	High Diffusion	7	5	3
	Low Diffusion	13	6	23
High Frequency	Median Diffusion	11	6	11
	High Diffusion	6	5	3

VDOT Corrosion Resistant Reinforcement

 Corrosion Resistant Reinforcing Steel, Class I shall conform to ASTM A1035/A1035M – Standard Specification for Deformed and Plain, Low-carbon, Chromium, Steel Bars for Concrete Reinforcement

- Corrosion Resistant Reinforcing Steel, Class II shall conform to AASHTO Designation: MP 13M/MP 13-04, Standard Specification for Stainless Steel Clad Deformed and Plain Round Steel Bars for Concrete Reinforcement
- Corrosion Resistant Reinforcing Steel, Class III shall conform to ASTM A955/A955M Standard Specification for Deformed and Plain Solid Stainless Steel Bars for Concrete Reinforcement.

Time to Corrosion Initiation – Corrosion Resistant Rebar

Degree of Crack Frequencies	Category	A1035 Rebar (years)	A955 Steel (years)
Uncracked	Uncracked	150+	150+
	Low Diffusion	150+	150+
Low Frequency	Median Diffusion	150+	150+
	High Diffusion	100+	150+
	Low Diffusion	150+	150+
Median Frequency	Median Diffusion	100+	150+
	High Diffusion	56	150+
	Low Diffusion	100+	150+
High Frequency	Median Diffusion	64	150+
	High Diffusion	30	150+

Service Life of Corrosion Resistant Reinforcement

Degree of Crack Frequencies	Category	A1035 Rebar (years)	A955 Steel (years)
Uncracked	Uncracked	150+	150+
	Low Diffusion	150+	150+
Low Frequency	Median Diffusion	150+	150+
	High Diffusion	150+	150+
	Low Diffusion	150+	150+
Median Frequency	Median Diffusion	150+	150+
	High Diffusion	150+	150+
	Low Diffusion	150+	150+
High Frequency	Median Diffusion	150+	150+
	High Diffusion	150+	150+

 Concrete cracking allows significantly higher chloride diffusion compared to uncracked concrete locations.

• Surface crack widths do not have a strong correlation with the rate of chloride diffusion; however crack depths exhibited a strong correlation.

 Time to corrosion initiation in bridge decks built with relatively less permeable concrete with supplementary cementitious materials was affected significantly, while the older mix design with plain OPC was not sensitive to the presence of cracks.

• Time to end-of-functional-service-life is difficult to model and needs more information to improve reliability.

 VDOT's recently used concrete mix with corrosion resistant reinforcement, A1035 (MMFX-2) and A955 (Stainless Steel), was considerably durable compared to the bare steel.

Thank you