Nondestructive Tunnel Liner Evaluation

Using Ground Penetrating Radar, Infrared Thermography and High Resolution Imaging

Anthony Alongi, President – Penetradar Corporation

September 14, 2016
Evaluation of Tunnel Liners Presents a Challenging Problem

- Tunnels are in the constant presence of moisture, and over time can experience:
 - Deterioration of liner & corrosion of reinforcement,
 - Voids behind liner & water flow thru liner

- Evaluation & maintenance is difficult due to:
 - Limited access & high usage,
 - Accessible from one side only
 - Presence of tile face masking underlying problems
 - Difficulties in physical access to conduct inspections

- Manual and destructive methods exist, but are difficult, labor intensive, require closures and are expensive

What is needed is a better, more cost effective non-destructive method
Tunnel Evaluation
Using GPR - IRT - HRI Technology

SHRP2 R06G Proposed NDT Solution

• Ground Penetrating Radar
• Infrared Thermography, and
• High Resolution Video Imaging
• IRIS GPR
• IRT Systems
• HRI Systems
• Vehicle Inspection Systems
• R&D – SHRP, NASA, NVESD
Technical Services
SHRP2 R06G Focused on Existing NDT Technologies Previously Used in Other Applications

- Infrared Thermography
- Ground Penetrating Radar
- High Resolution Imaging
High-Speed Infrared Thermography

- **Infrared Camera**
 - 640 x 480 resolution
 - 0.1 degree C resolution
 - 30 Hz scan rate
 - Radiometric data

- **Data Collected in a Continuous Swath**

- **Results are converted from forward-view to plan-view.**

IRT bridge deck evaluation shown below. Delaminations shown as “red” areas.
High-Speed Ground Penetrating Radar

- **GPR**
 - Non-contacting antennas (500MHz to 2.5GHz)
 - 100 Hz scan rate (or greater)
 - 4 Antenna array

- Data Collected as Individual Scans

- Results are assembled into a plan-view map.

GPR bridge deck evaluation. Probable areas of delamination shown as green-yellow-red
High Resolution Imaging

- High Resolution Video Camera
 - 4k optical resolution (3840 x 2160 pixel = 8.3M pixel)
 - 120Hz scan rate

- High speed image recording (50MPH)
 - Collected in forward-view
 - Converted to plan-view (top-view)
Advantages of GPR and IRT for Evaluation of Tunnels

- Non-Destructive
- Non-Contacting
- Fast (10-15MPH) Inspection Speed
- Not affected by Surface Material (or Presence of Tile) - GPR
USES OF NDT IN TUNNEL EVALUATION

• Liner Thickness & Depth of Reinforcement
• Delamination of the Concrete Liner
• Voids Between the Liner and Base
• Water Flow Through and Behind the Liner
• Detection of Cracks
Tunnel Liner Evaluation

Theory

- GPR Layer Thickness
- GPR Void Detection
- GPR Detection of Moisture Within and Behind Liner
- GPR Detection of Deterioration of Concrete Liner
- IRT Detection of Concrete Cracks & Water Flow
Tunnel Liner Evaluation

GPR - Generation of Radar Waveforms

Transmitted Signal

Surface Echo
Concrete-Base Echo
Asphalt-Concrete Echo

Emitted Signal

Air $\varepsilon_0 = 1$
Asphalt $\varepsilon_1 = 6$
Concrete $\varepsilon_2 = 8$
Base Material $\varepsilon_3 = 10$
GPR Measurement of Layer Thickness (X) Based on Transit Time of Radar Wave (T) and Radar Wave Velocity (V)

\[X = V \times T \]
Tunnel Liner Evaluation - GPR

- GPR Detection of Voids Behind Tunnel Liner Based on Polarity of Signal from Back of the Liner
- Could be Air or Water-Filled
MOISTURE DETECTION

GPR Detection of Moisture in Liner or Base by Measuring the Reflection Coefficient (ρ) or Dielectric Constant (ε) of Material
GPR Detection of Deteriorated Concrete is Based on Measurement of Signal Attenuation in the Material.
Tunnel Liner Evaluation - IRT

CONCRETE DETERIORATION, CRACKS AND WATER FLOW

• IRT DETECTS CRACKS AND WATER FLOW BASED ON TEMPERATURE DIFFERENTIAL
INSPECTION METHOD

- **GPR** - Longitudinal Scans are made in all Clock Positions Along Length of Tunnel – 3 Ft apart

- **IRT & HRI** – Longitudinal Scans are made along the length of the tunnel. Left & Right Wall & Ceiling

- **Speed** 10-15MPH
Tunnel Liner Evaluation

GPR Data Collection

GPR System used for Inspection of Roadway Tunnels

- Penetradar GPR Shown in Liberty Tunnel, Pittsburgh, PA
Tunnel Liner Evaluation

GPR Data Collection

GPR System used for Inspection of Roadway Tunnels

- Penetrador’s GPR Shown in Liberty Tunnel in Pittsburgh, PA

45 second video [click image to start/stop]
Tunnel Liner Evaluation

GPR Data Collection

Hyrail GPR System used for Inspection of Rail Tunnels

- Penetradar’s GPR System Shown in DART Tunnel
Tunnel Liner Evaluation

NON-DESTRUCTIVE INSPECTION OF LIBERTY AND ARMSTRONG TUNNELS
NON-DESTRUCTIVE INSPECTION OF LIBERTY AND ARMSTRONG TUNNELS (September 22 – 25, 2015)

Methods used:
- Ground Penetrating Radar
- Infrared Thermography
- High Resolution Imaging

Objectives:
GPR
- Detect Delamination/Deterioration – shallow delamination
- Voids & Areas of High Moisture Behind Liner
- Areas of Moisture in Liner

IRT
- Areas of Water Flow & Surface Moisture
- Cracks
- Debonded Tiles

HRI
- Visual documentation
- Used for comparison with GPR and IRT
Liberty Tunnel NDT Inspection

- GPR, IRT and HRI
 - Approx. 177,000 sq. ft. inspected in one evening (over 1 mile length)
- Shallow delamination of liner
 - Detected with GPR in 4.1% of area inspected, overall
 - In test area GPR detected 11.9% and sounding detected 7.2%
 - In test area GPR detected 73.2% of delaminations that were detected with sounding
 - In test area GPR detected 90.2% of sound areas that were detected with sounding
- Water-filled voids and moisture behind liner
 - Was detected with GPR in 13.2% of area, overall
- Air-filled voids behind liner
 - Was detected with GPR in 6.5% of area, overall
- IRT did not produce usable information
Armstrong Tunnel NDT Inspection

➢ GPR, IRT and HRI
 - Approx. 57,000 square feet of wall area inspected in one evening

➢ Deterioration of concrete liner
 - Measurement of GPR signal attenuation per ASTM D6087-03
 - Medium or high signal attenuation detected in 14.4% of wall area
 - Low signal attenuation detected in 10.9% of wall area

➢ Moisture in concrete liner
 - Was detected with GPR by measurement of dielectric constant
 - High moisture (10+%) detected in 14.1% of wall area
 - Medium moisture (2% - 10%) detected in 73.4% of wall area
 - Low moisture (<2%) detected in 12.5% of wall area
Tunnel Liner Evaluation

NDT TUNNEL LINING CONDITION ASSESSMENT

Visual Plan-View Map
Scale: 1 Inch = 10 feet

IRT Plan-View Map

GPR Attenuation Plan-View Map

GPR Dielectric Constant Plan-View Map

Armstrong Tunnel
High Resolution Image
IRT Thermal Image
GPR Attenuation
GPR Dielectric Constant

PENETRADAR CORPORATION
Page 1 of 1
Armstrong Tunnel GPR Attenuation Distribution

- West Wall Attenuation: 25.0% Total
- East Wall Attenuation: 25.5% Total
- East Wall contained higher levels of attenuation
 - Suggest east wall to be in generally worse physical condition
Armstrong Tunnel Dielectric Constant (ε_r) Distribution

➢ West Wall Average ε_r: 9.6 (≈ 4% moisture content)
➢ East Wall Average ε_r: 12.2 (≈ 8% moisture content)
➢ East Wall was calculated to have almost twice the moisture content as the West Wall.
Armstrong Tunnel Infrared Temperature Distribution

➢ West Wall Average Temperature: 78.1° F
➢ East Wall Average Temperature: 77.2° F

➢ Difference in temperature could be due to:
 ➢ Construction of tunnel and area behind each wall
 ➢ Result of higher moisture content conducting heat
Conclusions and Recommendations

- Methods defined by SHRP2 R06G for tunnel evaluation were shown to be feasible in practice
 - Equipment specifications have been identified
 - Procedures have been developed & demonstrated
 - Methods of analysis of data have been suggested
- Additional Field Testing with Additional Ground Truth
 - with emphasis on determining reliability of NDT relative to various types of defects and identification of appropriate method of data analysis
- Each Tunnel to be Evaluated Based on its Specific Design
 - Need to better define the technique and analysis methods to achieve optimal results based on design, age and general condition
- Development of Standards – ASTM & AASHTO
Tunnel Evaluation
Using GPR - IRT - HRI Technology

THANK YOU
Penetrador Corporation, Niagara Falls, NY, U.S.A., reserves the right to alter the contents of this slide presentation and/or equipment specifications without prior notice.

No part of this slide presentation may be reproduced or utilized in any form or by any means without written permission from Penetrador Corporation.

Products of Penetrador Corporation are covered by U.S. and foreign patents issued and pending.

PENETRADAR CORPORATION
2509 Niagara Falls Boulevard
Niagara Falls, New York
14304, U.S.A.
Tel: (716) 731-4369
Fax: (716) 731-5040
Web Site: [www.pemetrador.com](http://www.penetradar.com)