Service Life Design on Alternative Delivery Projects

Anne-Marie Langlois, P.E., P.Eng.
COWI North America Ltd.

January 2018
What Is the Objective?

• Longer time before obsolescence and/or major rehabilitation:
 – Reduced maintenance and rehabilitation costs
 – Reduced disruption to users
 – Less reliance on outside contractors to do the work
 – No surprises re maintenance and rehab requirements

• Lower full-life costs… with reasonable initial cost premium

• Design, construction and quality management that provides confidence that
 the objectives will be achieved

• Scope: concrete, structural steel, cables, M&E systems, pavements and
 wearing courses
What Do We Need for Specifications?

• Avoid vague statements like:

 ➢ "Bridges are to be designed with consideration given to the Department’s 100-year-bridge life initiative."

 ➢ "The service life of the structure shall be 100 years."
What Do We Need for Specifications?

- Definition for service life
- Design methodology
- A limit state
- Specific exposure conditions
- Acceptance testing to be performed during construction (tests and frequency)
Definition of Service Life

- CSA A23.1-14 and S6: Service life — the time during which the structure performs its design function without unforeseen maintenance or repair.

- ACI 365: Service life (…) is the period of time after (…) placement during which all the properties exceed the minimum acceptable values when routinely maintained.

- AASHTO LRFD: The period of time that the bridge is expected to be in operation.

- *fib* Bulletin 34 - Model Code for Service Life Design: Design Service Life – assumed period for which a structure or a part of it is to be used for its intended purpose.
Design methodology

- fib Bulletin 34 Model Code for Service Life Design
- fib Model Code for Concrete Structures 2010
- ISO 16204:2012 Service Life Design of Concrete Structures
Limit State

• Concrete components must resist chloride ingress such that corrosion is not initiated within the service life based on a target confidence level of 90%.

• Specific service lives for different components:
 – Non-replaceable components
 – Replaceable components:
 • Bearings
 • Expansion joints
 • Concrete barriers
 • Coatings for structural steel (paint system)
Specifications

• Service life is the actual period of time during which a structure performs its design function without unforeseen costs for maintenance and repair.

• Non-replaceable components (state which ones) shall be designed for a 100 year service life.

• The service life of concrete components shall be in accordance with Bulletin 34, Model Code for Service Life Design, written by the International Federation for Structural Concrete (fib), February 2006.

• Concrete components must resist chloride ingress such that corrosion is not initiated within the service life based on a target confidence level of 90%.
Specifications

• Specific service life for non-replaceable components
 – Bearings
 – Expansion joints
 – Concrete barriers
 – Coatings for structural steel (paint system)
 • add definition of service life for structural steel
Specifications

• Testing during construction can be specified:
 – Concrete durability properties
 o Rapid chloride migration NTBuild 492
 o Acid soluble chloride content ASTM C1152
 o Plastic air content
 o Hardened air content
 o Aggregates properties (AAR)
 – As-built concrete covers
Specifications

• Clarify procedure for non-conformances
 – low cover
 – high concrete transport properties

• Expect deviations from Standard Specifications
 – type of cementitious materials and amount
 – tests types and acceptance limits
 – less prescriptive requirements in some instances
Public-Private-Partnership

• Requirements at Handback
 – Condition of the component
 – Remaining service life criteria
 – Methodology?
 – Operating Company to submit a proposed methodology and Handback Plan 10 years prior to Handback?
Questions?

Anne-Marie Langlois
COWI North America
amln@cowi.com

Patricia Bush
AASHTO Program Manager for Engineering
phutton@aashto.org

Mike Bartholomew
CH2M (Jacobs)
mike.bartholomew@ch2m.com

AASHTO SHRP2 R19A Website:
http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

FHWA GoSHRP2 Website:
www.fhwa.dot.gov/GoSHRP2/

January 2018
Purpose:
Create a sample specification for durability design that could be used on a major project such as the Columbia River Crossing.
Documents Reviewed:

- I-5 Columbia River Crossing Design Criteria – Feb 2013
- ODOT Specification DB 141.11 – Structures – Oct 2013
- Design for Service Life: General Concepts (Prepared by Dr. Atorod Azizinamini for the TZHRC project) – June 2012
- Service Life Design for Alternate Project Delivery (presentation to the ASBI National Convention by Mike Bartholomew) – Nov 2016
- 100 Year Service Life Study – Chloride Migration Coefficient Evaluations – PennDOT Research Agreement E03134 by Clay Naito and others, June 2016
Sample Project Specifications Reviewed:

- Tappan Zee Hudson River Crossing – Nov 2012
- The East End Crossing (Louisville-Southern Indiana Ohio River Bridges) – July 2012
- Goethals Bridge Replacement (The Port Authority of New York and New Jersey) – Feb 2013
Reviewers:

- ODOT
 - Bruce Johnson, PE, State Bridge Engineer
 - Ray Bottenberg, PE, Bridge Preservation Managing Engineer
 - Andrew Blower, PE, Corrosion Protection Engineer

- COWI North America
 - Anne-Marie Langlois, PE, Bridge Engineer, Group Lead
 - Don Bergman, PE, Senior Project Director
 - Bradley Justin Pease, PhD, PE

- CH2M
 - Mike Bartholomew, PE, Design Practice Lead
Primary ODOT contributions:

- Language

 - Imperative Mood (vs. indicative mood)
 - Required by ODOT Specification and Writing Style Manual, 2009
 - Meets the “Plain Language” requirements of ORS 183.750
 - Results in specs that are shorter, crisper, and easier to understand
 - The subject is implied and the verb expresses command
 - Example: Furnish the following materials:
Primary ODOT contributions:

- Corrosion Loading
 - Will be determined by the project team
 - Current recommendations (% of chlorides by weight of concrete)
 - **1.1% for heavy exposure areas**
 - Siskiyou Mountains in SW Oregon
 - Coastal areas with direct exposure to the ocean
 - **0.12% for moderate exposure**
 - Portland Metro and the Willamette Valley
 - Expect modifications as we gather additional data
 - Volume of data is not adequate to establish a mean and standard deviation.
 - Available data is generally limited to decks
Specification Highlights

- **Scope**

 - This work consists of performing analysis, testing, and providing reports to demonstrate that the designed bridge is capable of providing the minimum required design service life according to **00XXX.50 Design Service Life Requirements**.
Specification Highlights

- **Definitions**

 - **Design Service Life** - The specified period of time for which a structure or a component is to be used for its intended purpose with appropriate maintenance activities and without unplanned major repair, or rehabilitation, or replacement.

 - **Service Life** - The actual period of time where the structure is used for its intended purpose with appropriate maintenance activities and without unplanned major repair, or rehabilitation or replacement.
Specification Highlights

- **Unacceptable Materials**
 - Stay-in-place deck forms
 - Steel girder or composite sandwich decking
 - Timber or timber composites
 - Proprietary composite steel/concrete girder systems
 - Previously used materials
Specification Highlights

- **Strategy**
 - Avoid the degradation mechanism.
 - Select materials and details which resist the degradation mechanism for the required period of time.
 - Supply supplementary measures to protect the structure from the degradation mechanism for the required period of time.
 - By other means acceptable to the Agency.
Specification Highlights

- Design Service Life – Non-Replaceable Components

 - Major Bridges 100 years
 - Other Bridges 75 years

Note that Design Service Life would typically be the same for all non-replaceable components.
Specification Highlights

- **Design Service Life – Replaceable Components**

<table>
<thead>
<tr>
<th>Component</th>
<th>Major Bridges</th>
<th>Other Bridges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Bridge Barriers</td>
<td>40 years</td>
<td>40 years</td>
</tr>
<tr>
<td>Steel Bridge Rail Elements</td>
<td>40 years</td>
<td>30 years</td>
</tr>
<tr>
<td>Deck Wearing Surface</td>
<td>25 years</td>
<td>25 years</td>
</tr>
<tr>
<td>Bridge Bearings</td>
<td>40 years</td>
<td>40 years</td>
</tr>
<tr>
<td>Expansion Joints</td>
<td>30 years</td>
<td>30 years</td>
</tr>
<tr>
<td>Coating Systems</td>
<td>20 years</td>
<td>20 years</td>
</tr>
</tbody>
</table>
Specification Highlights

- **Service Life and Corrosion Protection Plan**

 - Provide a detailed Service Life and Corrosion Protection plan for all bridges, prepared by or under the direction of a qualified Professional Engineer licensed in the State of Oregon and bearing the engineer’s signature, seal, and expiration date.
Specification Highlights

- **Full Probabilistic Models**
 - Model the chloride-induced corrosion process in concrete components based on the fib Bulletin 34 approach using a full probabilistic model.

 - Test the concrete transport properties of the concrete mixes used in the permanent works using a test consistent with the chosen model. Use the NT Build 492 test if the modeling is performed according the fib Bulletin 34 chloride-induced corrosion model.

*** Need to specify the test frequency! ***
Thanks to:

- **Andrew Blower** for confirming the fine details, especially the recommended corrosion loading.

- **Mike Bartholomew** for providing sample documents to get us started and for a detailed review of the draft specs.

- **Anne-Marie Langlois** and the COWI team for their very detailed review of the draft specifications.