

Overview of SHRP2 R19A and Activities Done by Other States

Oregon DOT Workshop – Portland, OR

Mike Bartholomew, P.E. Regional Discipline Lead, North American Bridges CH2M

January 17, 2018

Presentation Overview

- Need for Service Life Design
- SHRP2 R19A Implementation Action Program
 - Program Goals
 - Work Focus Areas
 - Participating Agency (Lead Adopter) Projects
 - Lessons Learned

Summary

Need for Service Life Design

 Growing interest by the industry to make bridges more durable with longer expected lives

- Influenced by political motivation popular to state that a new bridge will last 100+ years...
- Evident by requirements in recent Owner's RFPs
 - particularly on Design Build projects

Service Life Designed Structures

Ohio River Bridge, KY – 2016 (100 years)

Service Life Designed Structures

Tappan Zee Bridge, NY – 2018 (100 years)

Need More Focus on These

 Representing the majority of the 600,000+ bridges in the US

Need for Service Life Design

- Expectations of SLD requirements often unclear
- A more robust definition was needed for SLD

- FHWA in conjunction with AASHTO and TRB through the 2nd Strategic Highway Research Program (SHRP2) initiated project R19A
 - Bridges for Service Life Beyond 100 Years: Innovative Systems, Subsystems and Components

SHRP2 Project R19A

SHRP2 R19A Team

RESEARCH – TRB

IMPLEMENTATION – FHWA/AASHTO

SUBJECT MATTER EXPERTS /
LOGISTICS SME LEAD – CH2M (Jacobs)
TECHNICAL SMEs –
COWI

LEAD ADOPTER AGENCIES

Research Work Completed

Project R19A – Service Life Design Guide

http://www.trb.org/Main/Blurbs/168760.aspx

IAP Lead Adopter Agencies

Oregon

IAP Lead Adopter Agencies

Pennsylvania

Virginia

IAP Goals

- Promote SLD concepts through:
 - Marketing, outreach & training
 - Workshops & Peer Exchanges
- Assist Lead Adopter agencies in developing inhouse SLD skills
- Build a strong technical foundation
 - Develop training & reference materials
 - Develop "Academic Toolbox"
 - Lessons learned summaries

Current Work Focus Areas

- Performing tests on material durability properties of concrete mix designs
 - Concrete chloride diffusion coefficients (NT Build 492)
 - Measurement of as-constructed concrete cover

Elcometer

Current Work Focus Areas

- Tests on existing bridges to assess environmental loading and material behavior
 - Taking concrete cores to measure chloride loading from de-icing chemicals or sea water

Source: Germann Instruments

Current Work Focus Areas

Chloride content at

Apparent coefficient of

mass %1

[mm²/yr]

15.324

exposed face

chloride diffusion

- Developing design tools and processes to aid in SLD
 - Excel spreadsheet for chloride profiling

d	depth from surface	[mm]	1	2	3	4	5	6	7	8	9	10	15	20	25	
C _m	Test Values	[mass %]	0.368	0.450	0.410	0.326	0.266	0.231	0.175	0.183	0.132	0.124	0.117	0.080	0.078	
Cc	Fit Data to C _s , D _{app,C}	[mass %]	0.530	0.458	0.391	0.329	0.275	0.230	0.192	0.162	0.139	0.122	0.089	0.085	0.085	∑ (C _m -C _s) ²
$(C_m - C_s)^2$	Sum of least squares			6.72E-05	3.76E-04	1.10E-05	9.01E-05	1.55E-06	2.93E-04	4.34E-04	5.00E-05	4.66E-06	8.12E-04	2.66E-05	4.90E-05	2.22E-03
	Initial chloride content															
C _o	(measured)	[mass %]	0.085	0	Chloride Profile Fit Using											
				\[\sigma												
t	Exposure time	[vr]	1	\$ 0.500												

Implementation Products – Dedicated Webpage

http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

IAP Team Leaders

- FHWA Central Federal Lands
 - Bonnie Klamerus, Mike Voth
- Iowa DOT
 - Ahmad Abu-Hawash, Norm McDonald
- Oregon DOT
 - Bruce Johnson, Paul Strauser, Zach Beget, Ray Bottenberg,
 Andrew Blower, Craig Shike
- Pennsylvania DOT
 - Tom Macioce
- Virginia DOT
 - Prasad Nallapaneni, Soundar Balakumaran

FHWA Central Federal Lands

 Tropical Coastal Exposure on North Shore, Island of Kauai, HI

- 3 bridge replacements - 500' to 1,000' from the

coastline

FHWA Central Federal Lands

- Testing brackish water salinity
- Coring of existing abutments at water line / splash zone for surface chloride concentration

 NT Build 492 tests performed on baseline concrete mix designs

Iowa DOT

 New Bridge at Site with Extreme De-Icing Spray Exposure

- Using A1010 High Chromium Structural Steel
- Lab and field testing A1010 for steel corrosion resistance performance
- Recommendations from ODOT experience Hormoz Seradj

Iowa DOT

 Replacement of Twin Structures on I-35 over South Skunk River near Ames

- Chloride profile testing on existing structures
- NT Build 492 tests on concrete mix designs
- SB Bridge Designed to current Iowa DOT policies
- NB Bridge Will be designed using SLD
- Final Product Side-by-side comparison report between the two structures

- Statewide Evaluation of Chloride Resistance of Concrete
 - Performed NT Build 492 tests on 105 samples from 7 ready mix and 2 precast concrete suppliers

Figure 1: Company location map relative to PennDOT districts

PennDOT Concrete Classifications tested

- Class A Structures & Misc., 3000 psi (31 samples)
- Class AA Structures & Misc., 3500 psi (36 samples)
- Class AAAP Bridge Decks, 4000 psi (30 samples)
- Class HES High Early Strength, 3500 psi (3 samples)
- SCC Self-Consolidating, must meet requirements of above classifications (6 samples)

TABLE A
Cement Concrete Criteria

Class of Concrete	Use	Cement Factor ⁽³⁾⁽⁵⁾ (lbs/cu. yd.)		Maximum Water Cement Ratio ⁽⁶⁾ (lbs/lbs)	Mix Cor	inimu (2,9) De mpres trengt (psi) Days	esign sive h	Proportions Coarse ⁽¹⁾ Aggregate Solid Volume	28-Day Structural Design Compressive Strength	
		Min.	Max.		3	7	28	(cu. ft./cu. yd.)	(psi)	
AAAP	Bridge Deck	560	690	0.45	_	3,000	4,000	_	4,000	
HPC	Bridge Deck	560	690	0.45	_	3,000	4,000	_	4,000	
AAA ⁽⁴⁾	Other	634.5	752	0.43	_	3,600	4,500	_	4,000	
AA	Slip Form Paving ⁽⁷⁾	587.5	752	0.47	_	3,000	3,750	11.00-13.10	3,500	
AA	Paving	587.5	752	0.47		3,000	3,750	9.93-13.10	3,500	
AA	Accelerated Patching ⁽⁸⁾	587.5	800	0.47	_	_	3,750	9.93-13.10	3,500	
AA	Structures and Misc.	587.5	752	0.47		3,000	3,750	9.93-13.10	3,500	
A		564	752	0.50	_	2,750	3,300	10.18-13.43	3,000	
С		394.8	658	0.66	_	1,500	2,000	11.45-15.10	2,000	
HES	WHSC.	752	846	0.40	3,000	_	3,750	9.10-12.00	3,500	

Chloride Migration Coefficient by Concrete Class

Chloride Migration Coefficient by Concrete Supplier

- Final Service Life Design Workshop held August 16, 2016 in Harrisburg, PA
 - Overview of Service Life Design for Bridges
 - Chloride Induced Corrosion Modeling
 - Concrete Deterioration Mechanisms
 - Implications of Cracks in Concrete on Service Life
 - Service Life Design Requirements for RFPs
 - Service Life Design for Steel Structures

Virginia DOT

- Statewide Evaluation of Chloride Surface Loading and Resistance of Concrete
 - Compared historic chloride surface loading to fib-34 methods
 - Performed NT Build 492 tests on over 20 ongoing bridge construction projects around the state
 - Developing a database of reference values specific to Virginia for use in modeling

Virginia DOT

Categorization of chloride loading by zones

- Historical data (Williamson, 2007)
- fib 34-predicted

$$\left(\%\frac{mass\ Cl}{mass\ binder}\right)$$

Virginia DOT

- Final Service Life Design Workshop held October 4, 2017 in Charlottesville, VA
 - Overview of SLD SME Team
 - Concrete Material Testing Program Virginia Tech
 - Chloride Profiling of Existing Bridges Virginia Tech
 - Specifications on Corrosion Resistant Reinforcing VDOT
 - SLD Tools developed SME Team
 - SLD for Alternative Delivery Projects SME Team
 - R19A work done by other agencies SME Team

IAP Team Leaders

- Iowa DOT
 - Ahmad Abu-Hawash, Norm McDonald
- Maine DOT
 - Dale Peabody

Iowa DOT

- Thin Deck Overlays as a Bridge Preservation Action
 - Evaluation of structures on US-18 corridor
 - Kick-off Meeting to take place on June 20, 2017

Maine DOT

- Replacement of Beals Island Bridge in cold weather coastal environment
 - Chloride profiling on existing bridge

NT Build 492 tests on proposed concrete specifications

Lessons Learned

Lessons Learned

- Chloride profiling on core samples produce much better results than powder samples from rotary drilling
- Deicing application is low enough in some parts of Oregon to disregard corrosion from chlorides
- Need to develop contour maps of chloride loading
- Chloride migration tests (NT Build 492) are relatively easy to implement
 - Virginia and Iowa performing in-house testing

Lessons Learned

- Most state concrete classifications are flexible in w/c ratio, and % flyash or slag replacing cement
- Mix design flexibility ≠ Consistent durability properties
 - Chloride migration test values (NT Build 492)
 - Aging coefficients (need ≥ 20% flyash to benefit)
- Need to develop guidelines for more consistent concrete specifications for SLD

IAP Next Steps

- Conduct Agency Final Training Workshops for CFL, IA, ME
- Develop Reference Material Documentation / add to AASHTO/SHRP2 web page
 - Academic Toolbox
 - Life Cycle Cost Example
 - Lessons Learned Summaries
- Develop 5 FHWA Peer Exchanges in non-IAP states

Current Research - NCHRP 12-108

- Uniform Service Life Design Guide Specification
 - Sponsored by AASHTO T-9 Bridge Preservation Technical Committee
 - Modjeski & Masters / John Kulicki / Rutgers University/ COWI / NCS GeoResources
- Project Goals
 - Develop AASHTO Guide Specification for Service Life Design of Highway Bridges
 - Develop Case Studies to Demonstrate the Application of the Proposed Guide

Current Research - NCHRP 12-108

- Deemed-to-Satisfy and Avoidance of Deterioration
 Strategies to form the majority of the Guide Specification
 - Calibrated by more rigorous approaches
- Full Probabilistic and Partial Factor Methods
 - Included as an Appendix
- Environmental Classification
- Recommended Service Life
 - Main Structure Components
 - Replaceable Components
 - Bearings, Joints, etc.

Current Research – NCHRP 12-108

Work Plan / Schedule

- Tasks 1 & 2 Literature Review and Synthesis
- Task 3 Develop Proposed Methodology
- Tasks 4a & b Propose Annotated ToC & Case Studies
- Task 5 Interim Report #1(all completed 03/10/17)
- Tasks 6, 7 & 8 Develop & Execute Methodology & Sample Section &
 Interim Report #2 (scheduled 10/01/17)
- Tasks 9 & 10 Develop Guide and Case Studies (scheduled 07/01/18)
- Tasks 11 & 12 Revisions & Final Deliverables (scheduled 12/01/18)
- End of Project (scheduled 02/28/19)

Summary

- Service Life Design is necessary to promote more durable, longer lasting structures
- Current implementation
 - SHRP2 R19A projects (FHWA CFL, IA(2), ME, OR, PA, VA)
- Tools being developed to assist designers
 - http://shrp2.transportation.org/Pages/ServiceLifeD esignforBridges.aspx
- AASHTO T-9 Initiated Research
 - NCHRP 12-108 Uniform Service Life Design Guide

Questions?

Implementation Leads:

- Patricia Bush, AASHTO Program Manager for Engineering, pbush@aashto.org
- Raj Ailaney, FHWA Senior Bridge Engineer, Raj.Ailaney@dot.gov

Subject Matter Expert Team:

- Mike Bartholomew, CH2M, mike.bartholomew@ch2m.com
- Anne-Marie Langlois, COWI North America, amln@cowi.com

Resource: AASHTO's R19A Product Page

 http://shrp2.transportation.org/Pages/ServiceLifeDesignf orBridges.aspx