

Update of SHRP2 R19A Activities

AASHTO COB, Burlington, VT Technical Committee T-9 – Bridge Preservation

Mike Bartholomew, P.E., Senior Principal Bridge Engineer Jacobs

June 25, 2018

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Presentation Overview

- Service Life Introduction
- SHRP2 R19A Implementation Action Program
 - Program Goals
 - Work Focus Areas
 - Tools Developed
 - Participating Agency (Lead Adopter) Project Updates

Service Life Design (SLD)

- Design approach to resist deterioration caused by environmental actions
 - Also called Durability Design
 - Often referred to as Design for 100-year Service Life
- <u>Not</u> designing for the Service Limit States I, II, and III per LRFD 3.4

Common Deterioration Types

- Reinforcing steel corrosion
- Concrete cracking, spalling, delamination

 Structural steel corrosion following breakdown of protective coating systems

Environmental Exposure

- Chlorides from sea water or de-icing chemicals
- CO₂ from many wet / dry Cycles
- Temperature / Relative Humidity
- Freeze / Thaw Cycles
- Abrasion (ice action on piers, studded tires on decks)
- Internal / Alkali-Aggregate Reaction (AAR/ASR), DEF

Service Life Design Concepts

- Performing Service Life Design using the principles outlined in *fib* Bulletin 34 – Model Code for Service Life Design (2006)
- Focuses on resisting deterioration from environmental exposure

Model Code for Service Life Design

Need for Service Life Design

- Increasing interest by the industry to make bridges more durable with longer expected lives
- Popular for politicians to state that a new bridge will last 100+ years...
- Evident by requirements in recent Owner's RFPs

 particularly on Design Build projects

Service Life Designed Structures

• Confederation Bridge, Canada –1997 (100years)

Service Life Designed Structures

Mario Cuomo Bridge, NY – 2018 (100 years)

Need More Focus on These

• Representing the majority of the 600,000+ bridges in the US

Need for Service Life Design

- Expectations of SLD requirements often unclear
- A more robust definition was needed for SLD
- FHWA in conjunction with AASHTO and TRB through the 2nd Strategic Highway Research Program (SHRP2) initiated project R19A
 - Bridges for Service Life Beyond 100 Years: Innovative Systems, Subsystems and Components

SHRP2 Project R19A

RESEARCH – TRB IMPLEMENTATION – FHWA/AASHTO

SUBJECT MATTER EXPERTS / LOGISTICS SME LEAD – Jacobs TECHNICAL SMEs – COWI

> LEAD ADOPTER AGENCIES

Research Work Completed

• Project R19A – Service Life Design Guide

http://www.trb.org/Main/Blurbs/168760.aspx

IAP Lead Adopter Agencies

Oregon

Central Federal Lands

IAP Lead Adopter Agencies

Pennsylvania

Virginia

IAP Team Leaders

- FHWA Central Federal Lands
 - Bonnie Klamerus, Mike Voth
- Iowa DOT
 - Ahmad Abu-Hawash, Norm McDonald
- Maine DOT
 - Dale Peabody
- Oregon DOT
 - Bruce Johnson, Paul Strauser, Zach Beget, Ray Bottenberg, Andrew Blower, Craig Shike
- Pennsylvania DOT
 - Tom Macioce
- Virginia DOT
 - Prasad Nallapaneni, Soundar Balakumaran

Current R19A Work Focus Areas

- Performing tests on material durability properties of concrete mix designs
 - Concrete chloride migration coefficient (NT Build 492)
 - Measurement of as-constructed concrete cover

Elcometer

Chloride Migration Test NT Build 492

nordtest method

NT BUILD 492

Approved 1999-11

- Chloride Migration Coefficient from Non-Steady State Migration Experiments
 - Known as the Rapid Chloride Migration (RCM) Test
 - Determines Concrete Chloride Migration Coefficient,
 D_{RCM,0} used directly in fib Bulletin 34 deterioration model
 - 28 day cure, test duration usually 24 hours

NT Build 492

Schematic Test Setup

NORDTEST METHOD

 4" diameter x 2" thick specimen sliced from concrete test cylinder

- 10% Solution of NaCl in water
- Subjected to electrical current to accelerate chloride ingress

NT BUILD 492 5

NT Build 492

- Split specimen axially into 2 pieces
- Spray silver nitrate solution on broken surface
- Measure chloride penetration depth
- Calculate Chloride Migration Coefficient, D_{RCM,0}

Fig. 5. Illustration of measurement for chloride penetration depths.

Cover Measurements

264'-91/8" END - END SLAB ALONG NORTH EDGE

DECK PLAN

Cover Measurements

Component Name Location		me Deck Span 1		top mat		Standa Sampl	C	German Concrete and Construction Association - DBV, Concrete Cover and Reinforcement per Eurocode 2 Grid sampling										
As-Constructed Cover Dimensions at Grid Points [in]																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Α	2.52	2.20	2.60	2.99	2.05	2.87	2.72	2.80	3.11	2.99	3.11	2.83	2.52	2.62	3.11	2.83	2.52	2.20
В	2.40	2.20	2.48	2.72	2.72	2.76	2.91	2.99	2.17	2.83	2.99	2.09	2.40	2.71	2.99	2.09	2.40	2.20
С	2.24	2.24	1.46	1.57	2.52	2.20	2.36	2.20	2.20	2.17	2.20	2.24	2.34	2.44	2.54	2.56	2.45	2.51
D	1.93	2.01	1.65	2.01	2.24	2.28	2.24	2.13	2.32	2.48	2.52	2.80	2.62	2.56	2.52	2.80	2.51	2.01
E	2.28	2.40	2.09	1.93	2.01	1.89	2.17	1.97	2.46	2.60	2.56	2.32	2.28	2.40	2.56	2.32	2.28	2.40
F	2.99	3.11	2.48	2.09	3.15	2.91	2.83	2.56	2.83	2.72	2.83	2.28	2.99	3.11	2.83	2.28	2.99	3.11
G	2.24	2.99	3.15	1.75	2.60	2.91	2.44	2.99	2.24	2.48	2.24	2.40	2.24	2.99	2.24	2.40	2.24	2.99
Н	2.13	1.85	2.20	2.20	2.13	2.83	2.52	2.40	2.20	2.26	2.32	2.48	2.13	2.65	2.32	2.48	2.13	2.75

Statistical Evaluation of Measured Cover Depths, all units [in]

Target threshold %		5%	Qualitative Procedure			
Nominal cover	C nom	2.5	# measurements < c _{min} 6	# allowed per N	11	OK
Safety margin	Δc	0.6				
Req'd minimum cover	C _{min}	1.9	Quantitative Procedure			
Sample size	Ν	144	Outlier cover $X_{OG} = 2$	2.5X _M - 1.5X _{min} 3	8.91	
Median	X_{M}	2.44	Location parameter $r = 0$	$(X + X_M)/2$ 2	2.45	
Min	X_{min}	1.46	Form parameter k =1	.8 r/s 12	2.36	
Mean	Х	2.47	Threshold value c(5%)= r/	′(19 ^{1/k}) 1	.93	
Std. Dev.	S	0.36	Parameter $p(x)$ $p(x) = 0$	c _{min} /r 0).77	
			% of cover depth $< c_{min}$ $F(x) = F(x)$	$p(x)^{k}/(1+p(x)^{k})$	4%	OK

Current R19A Work Focus Areas

- Tests on existing bridges to assess environmental loading and material behavior
 - Taking concrete cores to measure chloride loading from de-icing chemicals or sea water

Source: Germann Instruments

Current Work Focus Areas

 Developing design tools and processes to aid in SLD

- Excel spreadsheet for chloride profiling

Implementation Products – Dedicated Webpage

AASH		FOLLOW US ON:
About AASHTO Bo	ookstore Software Meetings Committees Programs News	room Employment
AASH		UTIONS THE ROAD AHEAD
SHRP 2	Service Life Design for Bridges	
• Home	AASHTO > Strategic Highway Research Program 2 > Service Life Design for Bridges	🖨 🗹 🗾 f
Implementation Assistance		
Upcoming Events	SERVICE LIFE DESIGN FOR BRIDGES (R19A)	
 Upcoming Events SHRP2 Presentations 	SERVICE LIFE DESIGN FOR BRIDGES (R19A) Product Overview	
 Upcoming Events SHRP2 Presentations Products by Focus Area 		
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area 	Product Overview Comprehensive guidance to select and design durable bridge systems and components	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos 	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments.	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area 	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton 	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design	
Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate	
Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design	
Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design • Service Life Design for Bridges Progress Update Webinar	
Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design • Service Life Design for Bridges Progress Update Webinar	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos 	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design • Service Life Design for Bridges Progress Update Webinar Tools and Technologies Reports	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design • Service Life Design for Bridges Progress Update Webinar Tools and Technologies Reports • Durability Assessment of a Bridge Substructure (R19A) Design Tools • Service Life Design - Graphical Solution	
 Upcoming Events SHRP2 Presentations Products by Focus Area Products by Topic Area News and Videos Need More Information? Pamela Hutton SHRP2 Implementation Mgr phutton@aashto.org	Product Overview Comprehensive guidance to select and design durable bridge systems and components that are both easier to inspect and better-suited to their environments. • SHRP2 Service Life Design Guide For Bridges Document Presentations and Webinars • Concept Overview presentation: Durability Design Structure Birth Certificate • Product Detail presentation: Integrating Durability and Structural Design • Service Life Design for Bridges Progress Update Webinar Tools and Technologies Reports • Durability Assessment of a Bridge Substructure (R19A) Design Tools	

• <u>http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx</u>

Recent Tools/Activities

- Academic Toolbox guide for university professors to teach basic principles of SLD design (in final review/editing)
- IBC Workshop June 14, 2018 Worked SLD example bridge

- Sections
 - 1.0 Introduction (overview of SLD)
 - -2.0 Probability and Reliability Analysis
 - 3.0 Service Life Design of Concrete Components
 - 4.0 Service Life Design of Steel Components

• 2.1 Probability Distribution

Standard Normal Density Function

Log-Normal Density Function

• 2.2.2 Monte-Carlo Simulation

Defining the problem in terms of all the random variables Quantifying probabilistic characteristics of the random variables and corresponding parameters

Generating the values of these random variables

Evaluating the problem deterministically for each set of realizations of all the random variables Extracting probabilistic information from a number N of such realization

Determining the accuracy and efficiency of the simulation

Example 2.3.2

The chloride content (the demand, S) at the reinforcing steel level of a concrete footing is estimated to follow a normal distribution with statistical properties as follows:

 μ = 0.45 (wt% of cement) σ = 0.4

According to Section 2.1.1, this can also be written as N(0.45,0.4) because the variables are normal random variables. In the same way, the critical chloride threshold (the resistance, R) is estimated to be N(0.6,0.15).

			Mean, μ	Std. dev, σ
Chloride content	Demand, S	N(0.45,0.4)	0.45	0.4
Critical chloride threshold	Resistance, R	N(0.6,0.15)	0.6	0.15

What probability of failure (corrosion initiation) is estimated using the Monte Carlo method if R and S are independent?

Example 2.3.2

Table 3: Random Numbers Generated for this Example and Calculations of Probabilityof Corrosion Initiation

Random Number	Resistance	Random Number	Demand	r>s?(*)				
z _i	r _i	Zi	S _i	1~3:()				
0.9311	0.82	0.4537	0.40	1				
0.7163	0.69	0.1827	0.09	1				
0.4626	0.59	0.2765	0.21	1				
0.7895	0.72	0.6939	0.65	1				
0.8184	0.74	0.8189	0.81	0				
0.3008	0.52	0.9415	1.08	0				
0.3989	0.56	0.4967	0.45	1				
0.0563	0.36	0.2097	0.13	1				
0.1770	0.46	0.4575	0.41	1				
0.2036	0.48	0.4950	0.44	1				
(*) 0 = failure, 1 = success								
Number of samples	10							
Number of failures	2							
P _f	20%							

- 3.0 Service Life Design of Concrete Structures
 - 3.1 Sulfate Attack
 - Deleterious reactions occur when Portland cement with a moderateto-high tricalcium aluminate (C₃A) content is used in concrete in contact with sulfate bearing soil or groundwater. Effects include extensive cracking, expansion, loss of bond between the cement paste and aggregates, and alteration of the paste composition that will cause an overall loss of the concrete strength.

- 3.2 Delayed Ettringite Formation
 - Delayed ettringite formation (DEF) is a form of internal sulfate attack that can occur in concrete cured at elevated temperatures such as in precast units or mass concrete placements.
 - Maximum temperatures allowed during curing to mitigate risks of DEF are typically 150 to 160 degrees Fahrenheit (°F).

- 3.3 Alkali-Aggregate Reaction (ASR, ACR)

- 3.4 Freeze-Thaw

- 3.6 Corrosion

For concrete structures, a two-phase service life model can be used to represent the development of corrosion over time as illustrated in Figure 11. Often, the nominal service life is assumed equal to the corrosion initiation time, which is at the end of the initiation phase...

Figure 11: Two-phase modelling approach of corrosion deterioration

- 3.6.2 Chloride-Induced Corrosion
 - 3.6.2.1 Chloride-Induced Corrosion Modeling

One established service life design methodology that is built on a broad base of experience and that resides in the public domain is the *fib* Model Code for Service Life Design (2006).

Three different design strategies for concrete structures are typically adopted:

- Strategy A: Avoid the potential degradation mechanism.
- Strategy B: Apply protective measures that are deemed-tosatisfy the durability requirements.
- Strategy C: Select material composition and structural detailing to resist, for the required period, the potential degradation mechanism based on a full probabilistic approach.

– 3.6.2.2 Definition of Exposure Zones and Degradation Mechanisms

- 3.6.2.3 Selection of the Limit State
 - The limit states vary based on the project requirements. For example, a limit state can be corrosion initiation with a confidence level of 90 percent that corrosion will not be initiated within the targeted service life. This corresponds to a reliability index of 1.3 and is consistent with guidance provided in the Model Code for Service Life Design (fib, 2006).
- 3.6.2.4 Determination of the Design Parameters
 Required through the Mathematical Modelling

$$C(x,t)=C_{0}+(C_{S,\Delta x}-C_{0})\left(1-erf\left[\frac{x-\Delta x}{2\sqrt{D_{app,C}\cdot t}}\right]\right)$$

- 3.6.2.5 Chloride Profiles

Figure 13: Example of chloride profile from the Danish Farø Bridge at t=9 years

Example 3.9.2

Calculate the probability of failure (time to corrosion initiation) for t = 25, 50, 75, 100 years using a full probabilistic approach with the input values, according to:

Table 6: Input Parameters for the Chloride Ingress Mathematical Tool

	Value			
		Standard		
Parameter	Mean	deviation	Unit	Type of Statistical Distribution
Cover	55	8.3	mm	Lognormal
C _{S.Δx}	2.64	0.83	wt%/c	Lognormal
C ₀	0.12		wt%/c	Deterministic
C _{crit}	0.65	0.15	wt%/c	Lognormal
D _{RCM,0}	6	0.38	10 ⁻¹² m ² /s	Lognormal
а	0.47	0.2		Beta (lower limit=0 and upper limit=1)
Δx	8.9	5.6	mm	Beta (lower limit=0 and upper limit=50)
b _e	4800	700	Kelvin	Normal
T _{real}	286.5	4.2	Kelvin	Normal
T _{ref}	293		Kelvin	Deterministic
to	28		days	Deterministic
t	25, 50, 75, 1	00	years	Deterministic

Example 3.9.2 Answer

A second order reliability method was used to calculate the following probability of failure:

Service Life (years)	P _f (%)
25	20
50	31
75	37
100	40

The use of the Monte Carlo approach yields similar results

- 4.0 Service Life Design of Steel Components

Figure 19: End of service life for various thicknesses of hot-dip galvanizing and environments Source: American Galvanizers Association

IBC Workshop – Worked Design Example

IBC Workshop – Agenda

IBC Workshop W-8

Service Life Design – Worked Design Example

June 14, 2018 – National Harbor, MD						
Time	Торіс	Speakers				
8:00 – 8:10 am	 Welcome and SHRP2 Introduction 1 – FHWA Introduction (10 min) 	Raj Ailaney, FHWA				
8:10-9:15	 Service Life Design Background 2 – Introduction to Service Life Design (35 min) 3 – Introduction to <i>fib</i> Bulletin 34, Model Code for Service Life Design Neil Cumming, COWI (30 min) 					
9:15-9:45 am	m Introduction to Example Bridge • 4 – Design Criteria and Exposure Zones (30 min) Mike Bartholomew, Jacobs					
9:45-10:00 am	Break					
10:00-11:00 am	 Design 5 – Service Life Design of Concrete Elements (30 min) 6 – Service Life Design of Steel Elements (30 min) 	Neil Cumming, COWI Mike Bartholomew, Jacobs				
11:00-11:45 am	 Construction 7 – Implementation of Testing During Construction (20 min) 8 – Documenting Service Life Design & Construction Parameters (20 min) 	Neil Cumming, COWI Mike Bartholomew, CH2M				
11:45-12:00 pm	Questions & Wrap-Up					

Project Description

- Location:
 - New York City.
 - Highway under the bridge.
 - Urban environment with periods of snow and freezethaw cycles.
 - Annual mean temperature of 11.5°C (52.7°F).
 - Heavy use of de-icing salts.
 - Some sulfate present in soil: 0.14% by mass of water soluble sulfate was measured.

General Bridge Layout

- 264 ft. steel girder bridge with two spans (139 ft. and 125 ft.).
- Over the abutments, the girders are supported on elastomeric bearings and at the piers, the girders are supported on fixed bearings.
- Deck and girders are continuous over the pier.
- Uncoated reinforcement (black steel) used everywhere.

Superstructure Description

- Roadway is 30 ft. wide with two traffic lanes and shoulders, and a 6 ft. sidewalk.
- Composite cast-in-place, high performance concrete deck on steel girders.

• Deck is 9 in. thick with $2\frac{3}{4}$ " in. top cover and no wearing surface.

Substructure Description

• The central pier has three columns each supported by a pile cap and steel piles driven into bedrock:

- Uncoated reinforcement (black steel) used everywhere.
- No mass concrete.

Expected Service Life

Non-replaceable components	Minimum service life (years)
Foundations (piling), abutments, piers, structural steel, and deck	75
Replaceable components	Minimum service life (years)
Bridge bearings	50
Expansion joints	30
Painting (includes structural steel, metal rocker bearings, expansion joint extrusions, and decorative fencing	25
Barriers	50

Deterioration Mechanisms

- Main deterioration mechanism for buried steel and steel exposed to seawater or de-icing salts is corrosion
- Mitigation methods (AASHTO LRFD 10.7.5) may include:
 - Protective coatings (painting, galvanizing, metalizing)
 - Concrete encasement
 - Cathodic protection
 - Use of special steel alloys
 - Increased steel area (corrosion allowance)

Exposure Classification

- Defined Exposure Conditions
 - International Standard ISO 12944 Paints and varnishes – Corrosion protection of steel structures by protective paint systems – Part 2: Classifications of environments
 - 5 Classification of environments
 - Table 1 Atmospheric-corrosivity categories and examples of typical environments
 - Table 2 Categories for Soil and Water

ISO 12944 Exposure Categories

Table 1 — Atmospheric-corrosivity categories and examples of typical environments

		s s per unit sur (after first year	Examples of typical environments in a temperate climate (informative only)			
Corrosivity	Low-carbo	on steel	Zi	nc	Exterior	Interior
category	Mass loss	Thickness loss	Mass loss	Thickness loss		
	g/m^2	μm	g/m^2	μm		
C3 medium	> 200 to 400	> 25 to 50	> 5 to 15	> 0,7 to 2,1	Urban and industrial atmospheres, moderate sulfur dioxide pollution. Coastal areas with low salinity.	Production rooms with high humidity and some air pollution, e.g. food-processing plants, laundries, breweries, dairies.
C4 high	> 400 to 650	> 50 to 80	> 15 to 30	> 2,1 to 4,2	Industrial areas and coastal areas with moderate salinity.	Chemical plants, swimming pools, coastal ship- and boatyards.
C5-M very high (marine)	> 650 to 1 500	> 80 to 200	> 30 to 60	> 4,2 to 8,4	Coastal and offshore areas with high salinity	Buildings or areas with almost permanent condensation and with high pollution.

ISO 12944 Exposure Categories

Table 2 — Categories for water and soil

Category	Environment	Examples of environments and structures
Im1	Fresh water	River installations, hydro-electric power plants
		Harbour areas with structures like sluice gates, locks, jetties; offshore structures
Im3	Soil	Buried tanks, steel piles, steel pipes

Substructure Exposure Zones

Buried Piles

Superstructure Exposure Zones

Steel Girders

Exposure Zone	Examples of Elements	Exposure Conditions	Steel Corrosivity Category ISO 12944-2 [2]
Indirect De-icing Salts	Girders.	Alternating wetting and drying. Atmospheric O ₂ and CO ₂ . Freeze/thaw with indirect exposure to de- icing salts, leakage from deck joints, temperature and humidity variations.	C4: Temperate zone, atmosphere with moderate salinity

Steel Decorative Fence

Exposure Zone	Examples of Elements	Exposure Conditions	Steel Corrosivity Category ISO 12944-2 [2]
Direct De-icing Salts	Decorative fence.	Alternating wetting and drying. Atmospheric O2 and CO ₂ . Freeze/thaw with direct exposure to de-icing salts applications, temperature and humidity variations.	C5-M: Temperate zone, aggressive atmosphere

Deterioration Mitigation Methods

All mitigation design strategies are "Deemed to Satisfy"

Steel component	Exposure zone	Corrosivity category ISO 12944-2	Mitigation method
Steel H piles	Buried	lm3	Corrosion allowance
Girder	Indirect de-icing salts	C4	Painting
Decorative fence	Direct de- icing salts	C5-M*	Painting

Corrosion Allowance References

- AASHTO LRFD Section 10.7.5
- FHWA Design and Construction of Driven Piles Foundations, V1 – Section 6.12.1
- FDOT Structures Design Guidelines Section 3.1
- EN 1993-5, Eurocode 3: Design of Steel Structures, Part 5: Piling – Section 4.4

Florida DOT Structures Design Guidelines

Table 3.1-1Usage Limitations and Corrosion Mitigation Measures for Steel Piles and Wall Anchor Bars

			Minimum Required Sacrificial Thickness (inches) and Usage Limitations Based on Substructure Environmental Classification and Pile/Wall Anchor Bar Location				
Steel Component	Embedment	Corrosion Protection	Slightly Aggressive	Moderately Aggressive Extremely Aggr		Aggressive	
			Land and/or Water	Land and/or Water	Land	Water	
Pipe and	Completely Buried	None ¹	0.075	0.15	0.225 ²	Use Internally Redundant Pipe Piles Only, See SDG 3.1.F.2	
H-Piles	Partially	Specifications Section 560	0.09	0.18	0.27 ²	N/A	
	Buried	None ¹	0.15	0.30		Redundant Pipe ee SDG 3.1.F.2	
Anchored or Cantilever Sheet Piles	All	Specifications Section 560	0.045	0.09	0.135		
Wall Anchor Bars	All	See Footnote ³	0.09	0.18	0.27		

Florida DOT Structures Design Guidelines

- Environmental Classification versus Corrosion Rate per side
 - For partially buried piles and wall anchor bars:
 - Slightly Aggressive: 0.001 inches/year
 - Moderately Aggressive 0.002 inches/year
 - Extremely Aggressive 0.003 inches/year
 - For completely buried piles:
 - Slightly Aggressive: 0.0005 inches/year
 - Moderately Aggressive 0.001 inches/year
 - Extremely Aggressive 0.0015 inches/year
 - Design Life 75 years

Florida DOT Structures Design Guidelines

- H-Piles
 - HP 12 x 53 (flange and web thickness = 0.435 inch) required for strength and geotechnical requirements
 - Moderately aggressive environment (1400 ppm sulfates)
 - Fully buried
 - 0.001 inches/year x 75 years x 2 sides = 0.15 inch thickness loss
 - Required thickness for corrosion loss = 0.585 inch
 - Replace with HP 12 x 74 (flange = 0.610 inch, web = 0.605 inch)

Service Life of Coating Systems

Primary reference used for estimating coating system life

Paper No. 7422 **NACE** CORROSION 2016 CONFERENCE & EXPO

Expected Service Life and Cost Considerations for Maintenance and New Construction Protective Coating Work

> Jayson L. Helsel, P.E. Robert Lanterman KTA-TATOR, Inc. 115 Technology Drive Pittsburgh, PA 15275

Service Life of Coating Systems

- NACE Paper No. 7422 Includes a table of Estimated Service Life for 53 Coating Systems
 - Different corrosion exposure conditions (ISO 12944)
 - Various combinations of Acrylic, Alkyd, Epoxy, Epoxy Zinc, Organic and Inorganic Zinc, Metalizing, and Moisture Curing Polyurethane coats
 - Hand, Power Tool, and Sandblasted surface preparation
 - 1, 2, and 3 coat systems
 - Based on surveys of Coating Suppliers, Galvanizers, Steel Fabricators, Painting Contractors, and Owners

NACE 7422 Practical Service Lives

 Table 1A: Estimated Service Life for Practical Maintenance Coating Systems for Atmospheric Exposure (in years before first maintenance painting)⁴

				ils)	Service Life ^{1,3}			
Туре	Coating Systems for Atmospheric Exposure (primer/midcoat/topcoat)	Surface Preparation ²	Number of Coats	DFT Minimum (mils)	Mild (rural)/C2	Moderate (industrial)/C3	Severe (heavy industrial)/C5-I	Seacoast Heavy Industrial/C5-M
Acrylic	Acrylic Waterborne/Acrylic WB/ Acrylic WB	Hand/Power	3	6	12	8	5	5
Acrylic	Acrylic Waterborne/Acrylic WB/ Acrylic WB	Blast	3	6	17	12	9	9
Alkyd	Alkyd/Alkyd	Hand/Power	2	4	6	3	2	2
Alkyd	Alkyd/Alkyd/Alkyd (AWWA OCS-1C)	Blast	3	6	11	6	3	3
Alkyd	Alkyd/Alkyd/Urethane Alkyd	Blast	3	6	12	7	4	4
Alkyd	Alkyd/Alkyd/Silicone Alkyd (AWWA OCS-1D)	Blast	3	6	14	9	5	5
Ероху	Surface Tolerant Epoxy (STE)	Hand/Power	1	5	12	8	5	5
Ероху	Surface Tolerant Epoxy/STE	Hand/Power	2	10	17	12	9	9
Ероху	Surface Tolerant Epoxy/STE	Blast	2	10	21	15	12	12

Service Life of Coating Systems

- Practical Life
 - Time until 5-10% coating breakdown occurs and active rusting of the substrate is present
 - Corresponds to rust scale grade 4 in accordance with Steel Structures Painting Council, SSPC-VIS 2 (also ASTM D610)

Rust Grades 5 (3%) and 4 (10%)

S-Spot

G-General

Rust Grade 5-G, 3% Rusted

Rust Grade 5-S, 3% Rusted

Rust Grade 4-S, 10% Rusted

Rust Grade 4-G, 10% Rusted

P-Pinpoint

Rust Grade 5-P, 3% Rusted

Rust Grade 4-P, 10% Rusted

NACE 7422 Painting Practices

- Spot Touch-Up and Repair is when first time coating repairs are made and occurs at the Practical Life (P)
- Maintenance Repaint (M) includes spot priming and a full overcoat
- Full Repaint (F) involves total coating removal and replacement and marks the actual end of service life

Operation	Painting occurs in year
Original Painting	0
Spot Touch-Up and Repair	Practical life (P)
Maintenance Repaint	M = P x 133%
Full Repaint	F = P x 183%

Planned Tools/Activities

- Life Cycle Cost Analysis comparison of initial and long-term costs using different materials and protection strategies
- 5 Peer Exchanges
 - Northwest in Portland, OR July 24
 - Southeast in Richmond, VA August
 - Midwest in Ames, IA September
 - Northeast in Philadelphia, PA October
 - Southwest in Denver or Salt Lake City November

Planned Tools/Activities

- Develop 2 complete SLD Design Examples
 - Steel bridge in de-icing environment in NE US
 - Prestressed concrete bridge in coastal environment in SE US
 - Other deterioration types will be documented (AAR, DEF, freeze-thaw, coating failure, etc.)
- Develop calculations to determine example load and resistance factors to be used with chloride deterioration model

Planned Tools/Activities

- Develop 2 RFP example specifications for design-build projects
 - Multiple conventional highway bridges on a new or reconstructed corridor project
 - Major bridges (segmental, arch, cable-stayed)

- Conduct Agency Final Training Workshops for CFL, IA, ME
- Develop Reference Material Documentation / add to AASHTO/SHRP2 web page
 - Life Cycle Cost Example
 - Summary Guide to Service Life Design
 - Lessons Learned Summaries
- Develop 5 FHWA Peer Exchanges in non-IAP states

Questions?

Implementation Leads:

- Patricia Bush, AASHTO Program Manager for Engineering, pbush@aashto.org
- Raj Ailaney, FHWA Senior Bridge Engineer, <u>Raj.Ailaney@dot.gov</u>

Subject Matter Expert Team:

- Mike Bartholomew, Jacobs, mike.bartholomew@jacobs.com
- Anne-Marie Langlois, COWI North America, amln@cowi.com

Resource: AASHTO's R19A Product Page

 http://shrp2.transportation.org/Pages/ServiceLifeDesignf orBridges.aspx