Committee on Right of Way, Utilities and Outdoor Advertising Control 2019 Annual Meeting

Chattanooga, Tennessee
April 28–May 2, 2019
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs

Montana Department of Transportation

Why is Utility data Important to MDT?

MDT’s Experience with R01B Technologies
Why is Utility data Important to MDT?

- Affect the delivery of approximately $300M in projects annually
- Certification to FHWA
- Statute and MDT Policy requirements - 75%+ reimbursement

60-4-403. Relocation -- costs. (1) Except as provided in subsections (2) and (3), 75% of all costs of relocation, dismantling, and removal must be paid by the department as a cost of federal-aid systems construction.
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs

Drawing parallels from MDT's Processes

Why is Utility data Important to MDT?

- 30%
- 60%
- 90%

Typical Design Project – 100 to 200 activities!

Affect the delivery of approximately $300M in projects annually
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs
Drawing parallels from MDT's Processes
Available Data Sources - Yesterday

Subsurface Utility Engineering (SUE):

Phase I SUE – Qualified consultant using non-invasive techniques to obtain data

Phase II SUE – Vacuum Excavation

- 30% Design
- Design Utility Conflicts Review

Preliminary Utility Conflicts Review
- Research
- Ut. Co. As-builts
- One-call
- Surveyed features

Phase I SUE
- Research
- Ut. Co. As-builts
- One-call
- Surveyed features

Phase II SUE
- Ut. Co. CADD records

Additional Phase II SUE

- 60% Design
- Utility Plans

- 90% Design
- Construction

- Relocation

Research
Ut. Co. As-builts
One-call
Surveyed features

Phase I SUE
Phase II SUE
Ut. Co. CADD records

Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs
Drawing parallels from MDT's Processes
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs

Available Data Sources - Tomorrow

- 30% Design
 - Design Utility Conflcts Review
 - Preliminary Utility Conflcts Review
 - Available Data Sources - Tomorrow
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-builts
 - One-call
 - Surveyed features
 - Phase I SUE

- 60% Design
 - Utility Plans
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-builts
 - One-call
 - Surveyed features
 - Phase I SUE

- 90% Design
 - Utility Agreements
 - Relocation
 - Construction
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-builts
 - One-call
 - Surveyed features
 - Phase I SUE
 - Phase II SUE
 - Ut. Co. CADD records
 - Additional Phase II SUE
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs
Drawing parallels from MDT’s Processes

Available Data Sources

MCGPR
TDEMI
SPAR300

ULDR
LiDAR
Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Phase II SUE
Ut. Co. CADD records

GOAL – Minimize Data Rediscovery

30% Design
60% Design
90% Design Relocation

Construction

Preliminary Utility Conflicts Review
Design Conflicts Review
Utility Agreements

Surveyed features
One-call
Phase I SUE
Phase II SUE
Ut. Co. As-builts
Ut. Co. CADD records

MCGPR
TDEMI
SPAR300
ULDR
LiDAR
Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Phase II SUE
Ut. Co. CADD records

Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Phase II SUE
Ut. Co. CADD records

30%
60%
90%

Minimize Data Rediscovery
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs
Drawing parallels from MDT's Processes

Available Data Sources

- **30% Design**
 - Design
 - Preliminary Utility Conflicts Review
 - MCGPR
 - TDEMI
 - SPAR300

- **60% Design**
 - Design
 - Utility Agreements
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-buils
t - One-call
 - Surveyed features
 - Phase I SUE
 - Ut. Co. CADD records

- **90% Design Relocation**
 - Construction
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-buils
 - One-call
 - Surveyed features
 - Phase I SUE
 - Phase II SUE
 - Ut. Co. CADD records
 - Additional Phase II SUE

GOAL – Minimize Data Rediscovery
The Permitting Life-Cycle for Highway and Non-Highway Projects

Utility Coordination

Utility Permitting Coordination (Non-Hwy Project)

Approved Utility Permits

Relocation Installation

or

Construction
The Permitting Life-Cycle for Highway and Non-Highway Projects

Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTS

The Permitting Life-Cycle for Highway and Non-Highway Projects
The Permitting Life-Cycle for Highway and Non-Highway Projects

- **Utility Permitting Coordination (Non-Hwy Project)**
 - RETAIN AS-BUILT SURVEY IN ULDR
 - (Condition of Permit Approval)
 - **Utility Coordination (Hwy Project)**
 - Construction
 - Retention or Installation

- **Approved Utility Permits**

- **Available Data Sources**
 - 30% Design
 - 60% Design
 - 90% Design
 - Relocation
 - Construction

- **GOAL - Minimize Data Rediscovery**
 - MCGPR
 - TDEMI
 - SPAR300
 - ULDR
 - LiDAR
 - Research
 - Ut. Co. As-builtons
 - One-call
 - Surveyed features
 - Phase I SUE
 - Phase II SUE
 - Ut. Co. CADD records
 - Additional Phase II SUE
Locating Technologies (R01B), Feasibility of Mapping & Marking Underground Utilities By DOTs
Drawing parallels from MDT’s Processes

Available Data Sources

30% Design
Custer Avenue

60% Design
Utility Agreements

90% Design
Construction

Relocation

Design Conflicts Review

Preliminary Utility Conflicts Review

MCGPR
TDEMI
SPAR300
ULDR
LiDAR
Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Ut. Co. CADD records

MCGPR
TDEMI
SPAR300
ULDR
LiDAR
Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Phase II SUE
Ut. Co. CADD records
Additional Phase II SUE

ULDR
LiDAR
Research
Ut. Co. As-builts
One-call
Surveyed features
Phase I SUE
Phase II SUE
Ut. Co. CADD records

GOAL – Minimize Data Rediscovery
• 1.6 Mile Reconstruction Project with major utility and right-of-way constraints
• $6M in potential impacts to Yellowstone Pipeline if not avoided
• “OT” Phase: Alignment/Grade, Typical Section, Intersection control not yet determined
• Data from R01B technologies and other SUE methods used to aid in determination
Custer Avenue

MCGPR
- IDS GeoRadar Stream C 600 megahertz MCGPR
- 34 antennas in two polarizations
- Survey-grade RTK GPS
- 3D

TDEMI
- Multiple-coil Geonics EM61 Mk2
- Three-coil machine-towed array
- Survey-grade RTK GPS
- 2D only
Custer Avenue

RESULTS

- 78 New Point Features
- 64 Linear anomalies not associated with Phase I
 - 18% of detected Phase I linear features
- Captured known metallic pipes such as Yellowstone Pipeline
- Signal loops and comm lines, paved over lids and valves

TDEMI
- Multiple-coil Geonics EM61 Mk2
- Three-coil machine-towed array
- Survey-grade RTK GPS
- 2D only
RESULTS

- 2 New Point Features
- 68 Linear Anomalies not associated with Phase I
 - 19% of detected Phase I linear features
- Captured several pipes and cables not otherwise detected
- Pavement and distress cracks
<table>
<thead>
<tr>
<th>Test Hole Elevation</th>
<th>Offset</th>
<th>Nearest Observation</th>
<th>Pipe & Cable Locator</th>
<th>Spar Elevation Standard Deviations and QLs</th>
<th>Spar Offsets and Nearest Point</th>
<th>MGPR Elevation & Offsets</th>
<th>TDEM Located?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3868.17</td>
<td>0.1</td>
<td>58.6</td>
<td>N/A</td>
<td>0.16/A<sup>1</sup></td>
<td>Vertical 1.181/C<sup>3</sup></td>
<td>Vertical 0.89 Horizontal 0.2 Nearest 16.6</td>
<td>3869.13 -0.959 Horizontal 1.6</td>
</tr>
<tr>
<td>3882.26</td>
<td>0.6</td>
<td>0.8</td>
<td>3882.44</td>
<td>1.21/A</td>
<td>Vertical 3.084/D</td>
<td>Vertical -0.02 Horizontal 1.8 Nearest 3.4</td>
<td>Not seen on GPR</td>
</tr>
<tr>
<td>3881.11</td>
<td>0.2</td>
<td>4.6</td>
<td>N/A</td>
<td>0.20/A</td>
<td>Vertical 1.575/C</td>
<td>Vertical -0.42 Horizontal 1.4 Nearest 6.3</td>
<td>N/A*</td>
</tr>
<tr>
<td>3867.09</td>
<td>0.7</td>
<td>14.5</td>
<td>Not surveyed with spar</td>
<td></td>
<td></td>
<td></td>
<td>N/A*</td>
</tr>
<tr>
<td>3866.52</td>
<td>0.1</td>
<td>32.7</td>
<td>3867.48</td>
<td>0.295/C<sup>4</sup></td>
<td>Vertical 2.264/D</td>
<td>Vertical -0.96 Horizontal 0.4 Nearest 14.7</td>
<td>N/A</td>
</tr>
<tr>
<td>3859.37</td>
<td>0.4</td>
<td>13.1</td>
<td>3859.99</td>
<td>0.066/A</td>
<td>Vertical 0.853/C</td>
<td>Vertical -0.62 Horizontal 0.5 Nearest 14.7</td>
<td>Not seen on GPR</td>
</tr>
<tr>
<td>3866.95</td>
<td>0.1</td>
<td>1</td>
<td>3867.68</td>
<td>0.197/A</td>
<td>Vertical 0.591/B<sup>2</sup></td>
<td>Vertical -0.73 Horizontal 0.5 Nearest 30</td>
<td>N/A</td>
</tr>
<tr>
<td>3873.35</td>
<td>0.2</td>
<td>39</td>
<td>3873.61</td>
<td>0.066/A</td>
<td>Vertical 0.295/A</td>
<td>Vertical -0.26 Horizontal 0.5 Nearest 4.6</td>
<td>N/A</td>
</tr>
<tr>
<td>3885.03</td>
<td>0.2</td>
<td>1.3</td>
<td>3886.01</td>
<td>0.066/A</td>
<td>Vertical 0.394/B</td>
<td>Vertical -0.98 Horizontal 0.3 Nearest 12.6</td>
<td>N/A</td>
</tr>
<tr>
<td>3866.4</td>
<td>0.1</td>
<td>1.5</td>
<td>3866.63</td>
<td>0.066/A</td>
<td>Vertical 0.394/B</td>
<td>Vertical -0.23 Horizontal 0.3 Nearest 6</td>
<td>N/A</td>
</tr>
<tr>
<td>3862.91</td>
<td>1.7</td>
<td>99.8</td>
<td>3862.59</td>
<td>0.164/A</td>
<td>Vertical 1.214/C</td>
<td>Vertical 0.32 Horizontal 1.5 Nearest 27.1</td>
<td>N/A</td>
</tr>
<tr>
<td>3859.17</td>
<td>0.56</td>
<td>38.5</td>
<td>3859.35</td>
<td>0.033/A</td>
<td>Vertical 0.197/A</td>
<td>Vertical -0.18 Horizontal 0.1 Nearest 16.3</td>
<td>3858.48 0.695 Horizontal 0.1</td>
</tr>
</tbody>
</table>

1 - Spar QLA = +/- 4"
2 - Spar QLB = +/- 8"
3 - Spar QLC = +/- 1.7"
4 - Spar QLD = +/- 3.3'
5 - Spar QLE = +/- 6.6'

*N/A (TDEM & MGPR) = not surveyed or unable to survey
Custer Avenue MCGPR
Figure 4: MCGPR profile showing apparent utility bored beneath Custer Avenue, just west of National Avenue. This alignment was among many revealed with MCGPR, but not identified in the Phase 1 SUE.
Custer Avenue MCGPR
Custer Avenue
Custer Avenue TDEMI
Custer Avenue

TDEMI
3D Model of Utilities - Custer Avenue
Helena, MT