Rolling Density Meter Implementation

Presenter: Eyoab Zegeye Teshale

SHRP2 R06C GPR Rolling Density Meter Peer Exchange
October 24, 2017
AET Contacts

Eyoab Zegeye Teshale
ezegeye@amengtest.com

Derek Tompkins
dtompkins@amengtest.com

Daniel Kriesel
dkriesel@amengtest.com
Rolling Density Meter (RDM)

Collaboration with MNDOT

- Equipment and procedures (set up, calibration, testing & survey patterns)
- Application of RDM for HMA compaction assessments
- Development of a vehicle–mounted RDM frame setup
- Data collection, organization and processing
- Selection of coring locations
Rolling Density Meter (RDM)

Background

- Forensic evaluation of pavement using NDT (GPR, FWD, IRI etc.)
- Inspection and monitoring of quality and process of pavement products
- Assessment of pavement compaction using Intelligent Compaction (i.e. IC, PMTP)
- 2014: MnDOT pavement investigation on using GPR (air-coupled) to measure density
Rolling Density Meter (RDM)

Vehicle-Mounted RDM setup

- Maximize productivity of testing
- Improve safety & comfort for operators
- Reduce intrusion to traffic & construction operations
- Continuous power supply (Toughbook, GPS, camera etc.,)

How

- Build on the RDM Know-How gathered by MnDOT
- Adapt AET techniques used for GPR, IRI, FWD testing
- Assess cart-mounted versus vehicle-mounted systems
Rolling Density Meter (RDM)

Cart vs. Vehicle system

- Very limited data
- Need to control wandering around joints
Rolling Density Meter (RDM)

Cart vs. Vehicle system

- Effect of collection direction was found negligible
Rolling Density Meter (RDM)

Vehicle-Mounted RDM

- Mounting apparatus (outside)

- Metal plate mounted in the truck’s front receiver
- Adjustable mounting apparatus (height & horizontal shifting)
- High definition camera connected
- Back-wheel mounted DMI
- RDM, GPS
Rolling Density Meter (RDM)

Vehicle-Mounted RDM

- Control system (inside)
Rolling Density Meter (RDM)

Data collection – HMA pavement compactions

- CSAH 13 - Washington County, MN (0.5 miles)
  - Cart vs. Vehicle mounted RDM systems
  - Effect of collection direction
- TH 110 - Ramsey County, MN (2.5 miles)
  - Joint pass survey (unconfined joints)
- TH 60 - Rice and Goodhew County, MN (8 miles)
  - Joint pass survey (unconfined joints)
- TH 22 - Blue Earth County, MN (30 miles)
  - Joint pass and center of lane surveys
  - Immediately after compaction and next day survey
  - Survey of confined and unconfined joints
  - Three lifts
  - Full coverage
Rolling Density Meter (RDM)

Consultant perspective: Factors impacting costs and coverage density

- Traffic control type
  - Moving single lane closure (TH60)
  - Road closed for project (TH22)
  - Post-construction (Rolling attenuator)

- Paving strategies
  - One lane at a time (TH22)
  - Daily switch of lane to balance (TH60)

- Project details
  - Location
  - Length and lift numbers
  - Weather
Rolling Density Meter (RDM)

Consultant perspective: Equipment and challenges

- Battery-powered device (5-6 hours)
- Limited feedback
  - Surface dielectric
  - Can RDM output travel times to measure thickness?
- Calibration for vehicle mounted RDM
  - “Jump calibration”?
- Subjective measurements
  - How do you verify the joint data was measured within the specified offset?
  - Antenna height readjusted after calibration
  - Vehicle weight adjusted
Rolling Density Meter (RDM)

Consultant perspective: Other potential applications

- Considerations for investing on RDM
  - Specification and standards
  - Is this a final product of RDM?
  - Other potential applications (i.e. parking lots)
  - Relationships to other intelligent compaction measurements (IC, PMTP)
Rolling Density Meter (RDM)

Consultant perspective: Other potential applications

Surface uniformity: RDM surface dielectric

Layer thickness: Air-coupled GPR antenna
AET gratefully acknowledges MnDOT for the opportunity to work in this project.
Thank you !!!