

RDM Experience in Texas

SHRP2 RDM Peer Exchange October 24, 2017

Stephen Sebesta, TTI Bryan Wilson, TTI

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

History of GPR in TX

- 1 GHz antenna
- Forensic investigation

- Rehab analysis
- Corridor analysis
- Defects in layer(s)

Typical GPR View (PaveCheck)

Initial RDM Experience

RO6C Phase III (2012-2013)

- "1st" and "2nd" gen RDM
- Calibration mix specific
- RDM well suited to thin layers
- Thin-lift layer thickness?

TxDOT Thin Overlay Research (2014-2016)

 Good correlations to density, surface texture (MPD), and "flow time"

Recent Experience

Recent Experience

Objectives

- Define expected precision, bias, and accuracy
- Optimize field test procedures
- Identify best calibration method
- Improve system hardware and user interface

Activities

- Measurement of precision
- Deployment on projects
 - Analysis of calibrations
 - Analysis of air void measurement bias and accuracy
- Collaboration with stakeholders

Precision

Methods

- Lab environment
- 6 materials
- 4 antennas
- Data processed by methods in ASTM E 691

General test arrangement

Precision – Tabular Summary

Average Slab Dielectric	Repeatability St. Deviation Sr	Reproducibility St. Deviation S _R	Repeatability Limit r	Reproducibility Limit R
4.37	0.018	0.045	0.05	0.13
5.02	0.015	0.041	0.04	0.11
5.06	0.024	0.078	0.07	0.22
6.00	0.041	0.052	0.11	0.15
6.06	0.021	0.081	0.06	0.23
6.43	0.038	0.116	0.11	0.33

Constant On

Hard Reset

Average Slab Dielectric	Repeatability St. Deviation	Reproducibility St. Deviation	Repeatability Limit	Reproducibility Limit R
4.38	0.022	0.030	0.06	0.08
5.02	0.030	0.031	0.08	0.09
5.07	0.027	0.031	0.08	0.09
6.07	0.041	0.073	0.12	0.21
6.09	0.037	0.070	0.10	0.20
6.51	0.050	0.107	0.14	0.30

Precision – All Tested Conditions

More scans = More precision

Higher dielectric = Less precision (possibly)

"Constant on" precision = "Hard reset" precision

Deployment on Projects

Methods

- Deploy on multiple projects for 3 days of paving.
- Daily void-dielectric calibration.
- Full-coverage density prediction.
- Compare to TxDOT QA results and pay factors.

Deployment on Projects

Deployment on Projects

	5		Mix	NMAS	Binder	Optimum	Aggregate	Theo.	Thickness
	ð	Project	Туре	(in.)	Туре	AC (%)	Туре	Max SG	(in.)
	1	FM 1887	TOM-C	3/8	70-22	6.7	Limestone	2.474	1.0
	jen	RM 12	TOM-F	1/4	76-22	7.3	Sandstone	2.348	0.5
	U	Riverside	DG Ty-C	1/2	76-22	4.8	Limestone	2.447	2.0
		US 183	TOM-F	1/4	76-22	7.2	Sandstone	2.376	0.75
	Phase I	US 90	SP Ty-D	3/8	70-22	5.2	Quartzite Limestone	2.443	1.5
		IH 10	SP Ty-C	1/2	64-22	5.1	Sandstone Limestone	2.462	2.0
с С		FM 31	DG Ty-D	3/8	64-22	5.4		2.481	2.0
Ge Phase II	=	SH 6-VM	DG Ty-D	3/8	64-22	5.2	Dolomite Gravel	2.447	2.0
	Phase	SH 6- Waco	TOM-C	3/8	76-22	6.6	Sandstone Dolomite	2.434	1.25
		SH 30	SMA-C	1/2	76-22	6.0	Sandstone Dolomite	2.405	2.0

Calibrations – General Observations

Phase II Projects Using Day 1 Calibration Phase II Projects Daily Calibration

Calibrations - Challenges

Shift in Mix Design

Sampling and Model

Accuracy and Bias

Example iteration of one possible air void prediction scenario

Overall Accuracy and Bias Results (TxDOT Phase I Projects)

Dradiction	Bias		Error Standard	Accuracy 95%	
Method	Avg. Error (% voids)	p-value	Deviation (% voids)	Confidence Interval (% voids)	
GPR Dielectric (empirical)	0.02	0.463	0.99	0.02 ± 1.94	

Key Findings from Recent Work

Results

Dielectric repeatability limit

0.15 when average 5 scans

0.09 when average 500 scans Dielectric reproducibility limit

- 0.22 when average 5 scans
- 0.18 when average 500 scans

Field empirical calibration

Accuracy ±1.94% air voids

Conclusions

Higher sampling rate improves precision

When RDM is calibrated:

- Unbiased (avg. error is zero)
- Individual measurement error
 within ~2% air voids

Anticipated Future Needs and Activities

- Vehicle-mount RDM system
- Hardware / user interface updates
- Deploy technology on additional projects
 - 5 more anticipated through 2018

Anticipated Future Needs and Activities

- Mechanics Calibration
- Mechanics-Empirical Calibration

Reduce/eliminate core calibrations?

Anticipated Future Needs and Activities

- Implementation as QA tool
 - Majority of respondents at recent TxDOT event indicated preference to some association to pay factor

Questions / Discussion...

