

Oregon DOT Service Life Design Implementation

IBC W05: Service Life Design and Engineering of Bridges

Andrew S. Blower, ODOT Corrosion Protection Engineer

June 7, 2015

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

- Ochoco Creek New Bridge Construction
- NT Build 492 Results
- Deck Repair and Preservation
- Chloride Testing Method Refinement
- Chloride Ingress Modelling
- Review: Future Work

Ochoco Creek Bridge

- Insufficient load rating.
- Programmed for replacement.
- ODOT designated bridge for participation in R19A design efforts.

Ochoco Creek Bridge

- Cores were taken to obtain effective chloride loading from deicers.
- Cores of various mix designs were cast at 2 supplier plants and tested per NT Build 492 to find a chloride migration coefficient.
- Design engineers ran the simulation spreadsheet provided by partners at CH2M and B-T.
- Found that concrete mix design and rebar cover satisfied 100 year design criteria.

NT Build 492 Results

- 3 mix designs tested
 - Class 3300; 0.46 w/c
 with slag
 - Class 4000 HPC; 0.4
 w/c with SF and FA
 - Alt. Class 4000 HPC;0.4 w/c with slag
- Found combination slag and lower w/c ratio resisted CI best.

1313 Wilmington Pike		Date:	12/28/20	
Suite 2B			100103-01-4	
West Chester, PA 19382		Report #		
(610) 692-6551				
www. SivaCorrosion.com				
Client:	Concrete Cores From:			
Andrew Blower	Hooker Creek			
Oregon DOT	Tim Whitehall			
4040 Fairview Industrial Drive, SE MS-4	Quality Control			
Salem, OR 97302		(541) 389-09	541) 389-0981	
Date Core Arrived at SCS:	12/7/2015			
Concrete Type:	crete Type: Class HPC 40			
Test Date:	12/22/2015			
Age at Test Date (days):	28			
Test Method:	NT Build 492			
Core Number	Core #1	Core #2	Core #3	
Core Length, mm	202	202	202	
Core Diameter, mm	102	102	102	
Test Sample Thickness, mm	48.36	50.78	49.37	
Test Sample Diameter, mm	102	102	102	
Test Result				
Applied Voltage, Volts	30	30	25	
Test Duration, Hours	24	24	24	
Initial Current, mA	57.5	56.7	53.2	
Final Current, mA	76.8	81.5	69.3	
Initial Temperature, °C	23	23	23	
Final Temperature, *C	22	21	21	
Average Temperature, *C	22.5	22	22	
Average Chloride Penetration Depth, mm				
(see table below for calculation)	27.55	27.86	24.58	
Non-stady State Migration Coefficient, 10				
¹² m ² /s	12.56537	13.29287	13.62545	
Augrage Man stady Ctote Migration				
Average Non-Stady State Migration				

Deck Repair and Preservation

- Decks are typically the cause of reduced service life.
- Spalls affect travelling public long before damage is structural.
- Maintenance often fails to address the CI contamination causing spalling.

Deck Repair and Preservation

 Per ASTM C1152/C1152M regarding rotary hammer powder sampling: "Such samples may be unrepresentative, especially when the nominal maximum coarse aggregate size is 25mm (1 in.) or more. ... obtain a representative sample of the concrete mixture of at least 20g or more."

Photos Courtesy Siva Corrosion Services, Inc.

Photos Courtesy Siva Corrosion Services, Inc.

Photos Courtesy Siva Corrosion Services, Inc.

Chloride Ingress Modelling

- Chloride testing is reported in ½" (13mm) depth increments from the surface.
- A chloride profile is created and a curve fit is used to determine effective surface concentration and diffusion coefficient.

 Table 1

 Summary of Chloride Content for Bridge #02071A

No.	Core ID	Sample Depth (in)	Sample Number	Chloride Content, % Cl by mass concrete	Comments
1	BR02071A D2	0.25	Depth 1	0.192	Surface
2		0.75	Depth 2	0.108	
3		1.25	Depth 3	0.063	
4		1.75	Depth 4	0.029	
5		2.25	Depth 5	0.011	
6	BR02071A D3	0.25	Depth 1	0.187	Surface
7		0.75	Depth 2	0.134	
8		1.25	Depth 3	0.066	
9		1.75	Depth 4	0.043	
10		2.25	Depth 5	0.023	
11	BR02071A D4	0.25	Depth 1	0.184	Surface
12		0.75	Depth 2	0.143	
13		1.25	Depth 3	0.102	
14		1.75	Depth 4	0.047	
15		2.25	Depth 5	0.020	
16	BR02071A D5	0.25	Depth 1	0.243	Surface
17		0.75	Depth 2	0.113	
18		1.25	Depth 3	0.042	
19		1.75	Depth 4	0.028	
20		2.25	Depth 5	0.010	
21	8	0.25	Depth 1	0.220	Surface
22		0.75	Depth 2	0.187	
23	BR02071A D6	1.25	Depth 3	0.088	
24		1.75	Depth 4	0.052	
25		2.25	Depth 5	0.014	
26	BR02071A D7	0.25	Depth 1	0.103	Surface
27		0.75	Depth 2	0.086	
28		1.25	Depth 3	0.056	
29		1.75	Depth 4	0.041	
30	1	2.25	Depth 5	0.021	

Chloride Test Results ASTM C1152 Siva Corrosion Services, Inc. SCS Project # 100109-01 Page 1 of 2

Chloride Ingress Modelling

Chloride Ingress Modelling

Time=0 d Slice: Concentration (mol/m³)

- A workable model has been developed in Comsol.
- This is currently being developed to model various repair techniques including concrete removal, deck seals, membranes, cathodic protection, and electrochemical chloride extraction.

- Ochoco Creek Bridge verified to meet R19A service life design simulations for 100 year service life.
- Chloride testing methods have been refined for scoping and design of deck rehabilitation projects.
- A working model for chloride ingress has been developed and will be used to prescribe rehabilitation/preservation methods on bridge decks.

- ODOT intends to standardize chloride testing for rehabilitation projects and provide guidance for proper repair practices through its Bridge Design and Drafting Manual.
- ODOT will review durability tests for concrete such as resistivity, permeability, and ground penetrating radar for rebar clearances. These may be added to boilerplate specifications as quality control items.
- Carbonation models should be developed when designing for 100 years with superstructure details that typically have 1.5" (38 mm) reinforcement clearances.

Questions?

