Balanced Mix Design (BMD) for Asphalt Mixtures

Shane Buchanan
Oldcastle Materials

September 20, 2016
Discussion Items

- Need for Balanced Mix Design
- Define Balanced Mix Design
- Review FHWA Balanced Mix Design Task Force Efforts
 - Current State Agency Practice
 - NCHRP Problem Statement Development
 - Technical Brief Development on Balanced Mix Design
Need for Balanced Mix Design
What Type Distress Is Occurring?

Oldcastle Survey Question:
Within the past 5 years, what type of mix performance related distress has been most evident in your mixes?

~40 companies responding from ~30 states

- Most reported distresses are related to mix durability.
Pendulum of Asphalt Mix Performance

Pendulum of Hot Mix Asphalt Performance

CRACKING
DRY

OPTIMUM

RUTTING
WET
Design and optimum are often used interchangeably.

However, they mean two different things.

There can be many design binder contents for a mix, but only one truly optimum.

Optimum indicates the best binder content based on intended application, performance requirements/needs, and ultimately economics.

Goal is to get as close as possible to the true optimum for the mix.
History of Mix Design

1890
- Barber Asphalt Paving Company
 - Asphalt cement 12 to 15% / Sand 70 to 83% / Pulverized carbonite of lime 5 to 15%

1905
- Clifford Richardson, New York Testing Company
 - Surface sand mix: 100% passing No. 10, 15% passing No. 200, 9 to 14% asphalt
 - Asphaltic concrete for lower layers, VMA terminology used, 2.2% more VMA than current day mixes or ~0.9% higher binder content

1920s
- Hubbard Field Method (Charles Hubbard and Frederick Field)
 - Sand asphalt design
 - 30 blow, 6” diameter with compression test (performance) asphaltic concrete design (Modified HF Method)

1927
- Francis Hveem (Caltrans)
 - Surface area factors used to determine binder content; Hveem stabilometer and cohesionmeter used
 - Air voids not used initially, mixes generally drier relative to others, fatigue cracking an issue

1943
- Bruce Marshall, Mississippi Highway Department
 - Refined Hubbard Field method, standard compaction energy with drop hammer
 - Initially, only used air voids and VFA, VMA added in 1962; stability and flow utilized

1993
- Superpave
 - Level 1 (volumetric)
 - Level 2 and 3 (performance based, but never implemented)

Balanced Mix Design Task Force Development History

- Concern nationally of early age durability related performance issues.
- Many states have started the process of “performance testing” during mix design and/or production to help ensure mix performance.
- Process has been referred to as a balanced mix design approach.
- National Pavement Implementation Executive Task Group (PIETG) highlighted BMD as needed focus area.
The PIETG is focused on the strategic program level challenges and opportunities in the deployment of pavement technologies.

Focus areas include:
- **Pavement Design and Analysis**;
- **Pavement Materials and Quality Assurance**;
- Pavement Surface Characteristics;
- Construction Technology;
- Pavement Sustainability;
- Technical Capacity; and
- Field Support/Technical Assistance.
<table>
<thead>
<tr>
<th>Pavement Implementation Executive Task Group (PIETG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHWA</td>
</tr>
<tr>
<td>John Bukowski</td>
</tr>
<tr>
<td>Christopher Wagner</td>
</tr>
<tr>
<td>Gina Ahlstrom</td>
</tr>
<tr>
<td>Jeff Withee</td>
</tr>
<tr>
<td>Mark Swanlund</td>
</tr>
<tr>
<td>Bryan Cawley</td>
</tr>
<tr>
<td>Stephen Gaj</td>
</tr>
<tr>
<td>Hari Kalla</td>
</tr>
<tr>
<td>INDUSTRY</td>
</tr>
<tr>
<td>Mike Acott</td>
</tr>
<tr>
<td>Audrey Copeland</td>
</tr>
<tr>
<td>Gerald Voigt</td>
</tr>
<tr>
<td>Leif Wathne</td>
</tr>
<tr>
<td>Jim Duit</td>
</tr>
<tr>
<td>Dave Howard</td>
</tr>
<tr>
<td>Ron Sines</td>
</tr>
<tr>
<td>Jay Winford</td>
</tr>
<tr>
<td>DOTs</td>
</tr>
<tr>
<td>Carlos Braceras</td>
</tr>
<tr>
<td>Dave Huft</td>
</tr>
<tr>
<td>Richard Tetreault</td>
</tr>
<tr>
<td>Russell McMurry</td>
</tr>
<tr>
<td>Garrett Moore</td>
</tr>
<tr>
<td>ACADEMIA</td>
</tr>
<tr>
<td>Peter Taylor</td>
</tr>
<tr>
<td>Kevin Hall</td>
</tr>
<tr>
<td>David Newcomb</td>
</tr>
<tr>
<td>Paul Tikalsky</td>
</tr>
</tbody>
</table>
BMD Task Force Formed at September 2015 ETG MTG

Excerpt on Balanced Mix Design Task Force formation
from Asphalt Mix ETG Meeting Report – Oklahoma City, OK – September 2015

Under the second area of interest, the Pavement Implementation Executive Task Group asked FHWA to create a task group on balanced mix design. Bukowski suggested creating a Task Group from not only ETG members but also friends of the ETG of 6-8 individuals to start by defining balanced mix design, goals, and how to achieve those goals. Hall noted that the Executive Group is looking for solutions, tools that can be done immediately and not for five years of research. For example, how to address cracking and what can be done at the mix design stage to minimize cracking and how to provide a state with a guidance to characterize cracking. It is not about a specific cracking test rather if a state already have a cracking test how would the state use the test at the design stage to balance the mix and minimize cracking. Bukowski mentioned that a discussion also on balanced mix design took place during the SOM meeting in Pittsburg. He noted that the new ETG Task Group needs to formulate suggested guidance about balanced mix design and provide a clear direction based on the various available methods and information. Hall suggested to think about the direction as almost like a road map for balanced mix design (where we want to be and how to get there). Hall noted that ultimately we need fundamental tests and analysis but what can be done in the meantime as part of the road map (what is available and what is not available). Musselman recommended the approach needs to stay practical.
BMD Task Force Membership

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Category</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Newcomb</td>
<td>Texas Transportation Institute</td>
<td>Academia/Research</td>
<td>d-newcomb@ttimail.tamu.edu</td>
</tr>
<tr>
<td>John Haddock</td>
<td>Purdue University</td>
<td>Academia/Research</td>
<td>jhaddock@purdue.edu</td>
</tr>
<tr>
<td>Kevin Hall</td>
<td>University of Arkansas</td>
<td>Academia/Research</td>
<td>kdhall@uark.edu</td>
</tr>
<tr>
<td>Louay Mohammad</td>
<td>Louisiana State University</td>
<td>Academia/Research</td>
<td>Louaym@lsu.edu</td>
</tr>
<tr>
<td>Brian Pfeifer</td>
<td>Illinois DOT</td>
<td>Agency</td>
<td>Brian.Pfeifer@illinois.gov</td>
</tr>
<tr>
<td>Bryan Engstrom</td>
<td>Massachusetts DOT</td>
<td>Agency</td>
<td>Brian.Pfeifer@illinois.gov</td>
</tr>
<tr>
<td>Charlie Pan</td>
<td>Nevada DOT</td>
<td>Agency</td>
<td>cpan@dot.state.nv.us</td>
</tr>
<tr>
<td>Curt Turgeon</td>
<td>Minnesota DOT</td>
<td>Agency</td>
<td>curt.turgeon@state.mn.us</td>
</tr>
<tr>
<td>Derek Nener-Plante</td>
<td>Maine DOT</td>
<td>Agency</td>
<td>derek.nener-plante@maine.gov</td>
</tr>
<tr>
<td>Eliana Carlson</td>
<td>Connecticut DOT</td>
<td>Agency</td>
<td>Eliana.Carlson@CT.gov</td>
</tr>
<tr>
<td>Howard Anderson</td>
<td>Utah DOT</td>
<td>Agency</td>
<td>handerson@utah.gov</td>
</tr>
<tr>
<td>Oak Metcalfe</td>
<td>Montana DOT</td>
<td>Agency</td>
<td>rmetcalfe@mt.gov</td>
</tr>
<tr>
<td>Robert Lee</td>
<td>Texas DOT</td>
<td>Agency</td>
<td>Robert.Lee@txdot.gov</td>
</tr>
<tr>
<td>Steven Hefel</td>
<td>Wisconsin DOT</td>
<td>Agency</td>
<td>Steven.Hefel@dot.wi.gov</td>
</tr>
<tr>
<td>Frank Fee</td>
<td>Consultant</td>
<td>Consultant</td>
<td>frank.fee@verizon.net</td>
</tr>
<tr>
<td>John D'Angelo</td>
<td>Consultant</td>
<td>Consultant</td>
<td>johndangelo@dangeloconsultingllc.com</td>
</tr>
<tr>
<td>Lee Gallivan</td>
<td>Consultant</td>
<td>Consultant</td>
<td>lee@gallivanconsultinginc.com</td>
</tr>
<tr>
<td>Richard Duval</td>
<td>FHWA - Turner Fairbank</td>
<td>FHWA Agency</td>
<td>Richard.Duval@dot.gov</td>
</tr>
<tr>
<td>Tim Aschenbrener</td>
<td>FHWA - Denver</td>
<td>FHWA Agency</td>
<td>timothy.aschenbrener@dot.gov</td>
</tr>
<tr>
<td>Andrew Hanz</td>
<td>Mathy Construction</td>
<td>Industry</td>
<td>Andrew.Hanz@mteservices.com</td>
</tr>
<tr>
<td>Chris Abadie</td>
<td>Pine Bluff S&G</td>
<td>Industry</td>
<td>abadie3522@icloud.com</td>
</tr>
<tr>
<td>Erv Dukatz</td>
<td>Mathy Construction</td>
<td>Industry</td>
<td>Ervin.Dukatz@mathy.com</td>
</tr>
<tr>
<td>Gerry Huber</td>
<td>Heritage Research</td>
<td>Industry</td>
<td>Gerald.huber@hrglab.com</td>
</tr>
<tr>
<td>Shane Buchanan</td>
<td>Oldcastle Materials</td>
<td>Industry</td>
<td>sbuchanan@oldcastlematerials.com</td>
</tr>
<tr>
<td>Anne Holt</td>
<td>Ontario Ministry of Transportation</td>
<td>Provincial Agency</td>
<td>Anne.Holt@ontario.ca</td>
</tr>
<tr>
<td>Randy West</td>
<td>NCAT</td>
<td>Research</td>
<td>westran@auburn.edu</td>
</tr>
</tbody>
</table>
BMD Task Force Goals and Focus Areas

- Define Balanced Mix Design
- Determine the current “state of practice” of BMD
- Present approaches/concepts for immediate use
- Recommend future needs (potential research) to advance BMD approaches
- Disseminate information
BMD Task Force Work Items

• Completed
 ○ Definition of Balanced Mix Design
 ○ Survey of Agency Current Practice
 ▪ Laboratory Balanced Mix Design Protocols
 ▪ Field Acceptance Protocols
 ○ Research Problem Statement (RPS) Submitted to AASHTO

• Current
 ○ FHWA Technical Brief on Balanced Mix Design
 ▪ Draft prepared, reviewed and being revised
Balanced Mix Design Definition

• “Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure.”

• Basically, it consists of designing the mix for an intended application and service requirement.
Agency Practices Related to BMD
Agency Approaches – 3 Main Approaches Identified

Balanced Mix Design Flowchart: v. 09-06-16

Select Trial Gradation; Ensure Aggregate Blend Properties

Conduct Volumetric Analysis Select Design Binder Content & Volumetric Properties

Conduct Performance Tests Rutting Cracking

Performance Passed? No Yes

Conduct Moisture Damage Test

Moisture Damage Passed? No Yes

Decrease Moisture Susceptibility

Conduct Volumetric Analysis Determine Initial Design Binder Content

Conduct Performance Tests Rutting Cracking

Performance Passed? No Yes

Adjust Mix Proportions And/or Binder Content

Conduct Moisture Damage Test

Moisture Damage Passed? No Yes

Decrease Moisture Susceptibility

Conduct Performance Tests

Select Design Binder Content

Conduct Performance Tests

Select Design Binder Content

Conduct Moisture Damage Test

Moisture Damage Passed? Yes

Conduct Volumetric Analysis Determine & Report Volumetric Properties at Design Binder Content

Performing Design

Adjust Mix Proportions And/or Binder Content

Decrease Moisture Susceptibility

Conduct Performance Tests Rutting Cracking

Performance Passed? Yes

Conduct Moisture Damage Test

Moisture Damage Passed? Yes

Conduct Volumetric Analysis

Verify Volumetric Properties

Validate JMF / Production

Volumetric Design w/ Performance Verification

hange 2016
Volumetric Design w/ Performance Verification — basically, it is straight Superpave with verifying performance properties; if the performance is not there, start over and re-design the mix. Volumetric properties would have to fall within existing M323 limits. Example States: Illinois, Louisiana, New Jersey, Texas, Wisconsin
Performance-Modified Volumetric Design – the initial design binder content is selected using M323/R35 prior to performance testing; the results of performance testing could ‘modify’ the mixture proportions (and/or) adjust the binder content – and the final volumetric properties may be allowed to drift outside existing M323 limits. Example State: California
Performance Design – this involves conducting a suite of performance tests at varying binder contents and selecting the design binder content from the results. Volumetrics would be determined as the ‘last step’ and reported – with no requirements to adhere to the existing M323 limits. Example States: New Jersey w/ draft approach
BMD Basic Example – Volumetric Design w/ Performance Verification

- **Texas DOT**
 - Volumetric design conducted
 - Hamburg Wheel Tracking Test (HWTT) AASHTO T 324
 - Overlay Tester (OT) Tex-248-F
 - Three asphalt binder contents are used: optimum, optimum +0.5%, and optimum -0.5%.
 - The HWTT specimens are short-term conditioned.
 - The OT specimens are long-term conditioned.

Within this acceptable range (5.3 to 5.8 percent), the mixture at the selected asphalt content must meet the Superpave volumetric criteria.
Using Performance Testing to Better Understand Your Mixes

- Performance space diagrams show the performance of a mix related to multiple tests.
- Allows the mix designer to visualize the mix performance and how to engineer the mix to provide the desired performance.
- Illustrates the impact of varying mix factors on performance.

From: Performance-Space Diagram for the Evaluation of High and Low Temperature Asphalt Mixture Performance, Buttlar et al, AAPT 2016
Need for Production Verification

Design

Optimize
• Local materials use, recycle, additives, cost, appropriate binder content
• Specific site/end use

Establish
• Performance criteria
• Potential surrogate test correlation
• Volumetric property baseline

Production

Verify
• QC testing
• Volumetrics comparison to baseline
• Surrogate (“Quick”) tests
• Performance tests at “x” frequency
BMD TF Work Products

Research Problem Statement
+
FHWA Technical Brief
Research Problem Statement

- RPS prepared by the BMD TF in June 2016
- Anticipated Results
 - 1) review of the state-of-the-practice for asphalt mixture design,
 - 2) review the development and state-of-the-practice for performance testing,
 - 3) development of a Recommended Practice for Balanced Mixture Design to implement performance testing in the design of asphalt mixtures, and
 - 4) development of a training and implementation plan and materials to move BMD ahead in State Highway Agencies (SHAs).

SHRP2 Peer to Peer Exchange 2016

~1 Million tons of HMA placed each day.
- Critical to address mix design in a more comprehensive manner
Favorable response during August SOM

Comments from Oak Metcalfe (TS 2d Chair)...

- Technical Section chairs to rank all the proposed research statements that were submitted during the SOM meeting at the beginning of August.

- There are eight total research statements from the SOM with the BMD statement being the only one in the area of asphalt mixtures or binder. (There are several in the area of pavement preservation, including fog seals)

- Rank each RPS on a scale of 1 to 5, with 5 being the highest priority. Our rankings are due to Jack by the 16th of September and there will be a group call to decide the final rankings on September the 23rd.
Research Problem Statement – Schedule

- Problem Statements Solicited: July 2016
- Problem Statements Due: October 2016
- Evaluations sent to Submitters: Early December 2016
- Ballot sent to SCOR and RAC Members: Mid-December 2016
- Ballot Due: February 2017
- SCOR Meeting: March 2017
• Tech Brief prepared and reviewed by full ETG.

• Revision work currently being handled by the task force.
 • Good document being made better

• Target October for final draft.

Balanced Mixture Design Approaches for Asphalt Pavement Construction

This *Technical Brief* provides an overview of balanced mixture design (BMD) approaches used by states in asphalt pavement construction. These approaches are still under development and this document will attempt to show its current status and some of the issues that will need to be addressed in the future.
Final Thoughts on Mix Design

- Key Foundational Points to Keep in Mind
 1. “Use What Works”
 2. “Eliminate What Doesn’t”
 3. “Be as Simple as Possible, Be Practical, and Be Correct”
Thoughts and Questions?