HMA Performance-Related Specification (HMA-PRS)

NC State University: Y. Richard Kim, Murthy Guddati
ARA: Harold Von Quintus, Hyung Lee
Heritage Research: Gerry Huber
AAT: Ray Bonaquist
FHWA: Nelson Gibson, Jay Lee

Presented at the Performance Specifications for Rapid Renewal (R07) Peer Workshop

November 6, 2015
How PRS Works

1. **Pavement Design**
2. **Planning**
 - Establish Performance Criteria
 - Identify AQCs and Target Values
 - Determine Incentives/Disincentives
 - Pay Factor

SOFTWARE

- How PRS Works
- Planning
- Pavement Design
- Performance

Graphs

- Quality
 - Designed
 - Constructed
 - Design AQC vs. As-Constructed AQC

- Performance
 - As-Designed
 - As-Constructed

Model Performance

Δ Life

I/DI
Challenges in PRS Acceptance

- Testing efficiency and simplicity - **Completed**
- Standardization of test methods - **Ongoing**
- Reliability of performance prediction models - **Completed**
- Predictive relationships between AQCs and performance prediction model parameters - **Ongoing**
- Same principles and methods between mix design and PRS - **Ongoing**
Asphalt Mixture Performance Tester
PBMD Laboratory Tests

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th># Tests</th>
<th>Testing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus</td>
<td>Dynamic modulus test (AASHTO TP 79/PP 61)</td>
<td>3</td>
<td>1 day</td>
</tr>
<tr>
<td>Fatigue Cracking/Thermal</td>
<td>Direct tension cyclic test - SVECD</td>
<td>4</td>
<td>1.5 days</td>
</tr>
<tr>
<td>Cracking</td>
<td>(AASHTO TP 107)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutting</td>
<td>Triaxial stress sweep test</td>
<td>4</td>
<td>1 day</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11</td>
<td>3.5 days</td>
</tr>
</tbody>
</table>
S-VECD Material Properties

- **$|E^*|$ Mastercurve**: Graph showing $|E^*|$ against reduced frequency.
- **Time-Temperature Shift Factor**: Graph showing log shift factor against temperature.
- **Damage Characteristic Curve**: Graph showing damage characteristic (C) against load level (S).
- **Energy-Based Failure Criterion**: Graph showing energy release rate (G^r) against cycle life (N_f).
Pavement Performance Prediction

LVECD Program
Damage Contours after 20 Years

Damage Factor (N/N_f) Distribution - @ September 1, 2021

- **Control**
- **Advera**
- **Sasobit**
- **Evotherm**
Field Validation of Models
Fatigue Cracking Transfer Function

Damage

Distress
Transfer Functions

\[
\%FC = \frac{100}{1 + \left(\frac{2.5D}{100}\right)^C}
\]

where \(\%FC = \% \text{ fatigue cracking},\)

\(D = \% \text{ damage predicted from LVECD},\) and

\(C = -0.83 - 724(1 + h_{ac})^{-3.103}\)

\[
RD_{Field} = \frac{RD_{LVECD}}{0.6946} - 4.2839
\]
Validation/Calibration Project - I

- NCAT Test Sections
 - Control
 - OGFC
 - High RAP
 - RAP + WMA
 - Foam WMA
 - Evotherm

Diagram:
- Surface (9.5 mm) 1.25" (32 mm)
- Intermediate (19 mm) 2.75" (70 mm)
- Base (19 mm) 3.00" (76 mm)
- Dense Graded Aggregate Base 6.00" (152 mm)
- Stiff Subgrade
Fatigue Prediction

NCAT

Before Calibration

No. of Cycles

Damage Area (%) 50
40
30
20
10
0
1.0E+06 1.0E+07 1.0E+08

After Calibration

No. of Cycles

LVECD Crack Area (%) 80
70
60
50
40
30
20
10
0
1.0E+07 1.0E+08

Field
Validation/Calibration Project - II

- Manitoba WMA Pavements
 - Surface layer: Control, Advera, Sasobit, Evotherm
 - Intermediate layer: Surface mixture + 35% RAP
Fatigue Prediction

MIT-WMA
Validation/Calibration Project – III

- Manitoba RAP Pavements
 - Surface layer
 - 0% RAP + PG 58-28
 - 15% RAP + PG 58-28
 - 50% RAP + PG 58-28
 - 50% RAP + PG 52-34 (soft binder)
 - Base layer: PG 58-28 mixture + 70% RAP

<table>
<thead>
<tr>
<th>0% RAP</th>
<th>15% RAP</th>
<th>50% RAP</th>
<th>50% RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>150/200 pen (PG 58-28)</td>
<td>150/200 pen (PG 58-28)</td>
<td>200/300 pen (PG 52-34)</td>
<td>150/200 pen (PG 58-28)</td>
</tr>
</tbody>
</table>

70% RAP Base Layer
Fatigue Prediction

MIT-RAP
Prediction Accuracy after Calibration

\[y = 0.77x + 0.51 \]

\[R^2 = 0.81 \]
Brazilian Pavements for Development of M-E Pavement Design Method

- Fundao project pavement test sections (27)
- National M-E project test sections (17)
Performance Prediction of Brazilian Pavements

\[R^2 = 0.72 \]
Field Crack Area (%)

LVECD Crack Area (%)

No. of Cycles

Pavement ME

Alligator Cracking (%)
LVECD vs. Pavement ME

NCAT
LVECD vs. Pavement ME

MIT-WMA
LVECD vs. Pavement ME

MIT-RAP
Rut Depth Prediction

(a) NCAT

Total Rut Depth (mm) vs. Rut Depth

(b) FHWA

Total Rut Depth (mm) vs. Rut Depth

(c) MIT - WMA

Total Rut Depth (mm) vs. Rut Depth

(d) MIT - RAP

Total Rut Depth (mm) vs. Rut Depth
Rutting Prediction

All Sections

Before Calibration

After Calibration
Steps Involved in HMA-PRS Implementation
Agency Actions Needed

Fact: Pavement structural design is available.

STEP 1: Changes in fundamental properties due to a change in AQCs are estimated using predictive relations (either from agency’s material database, or from ongoing research by FHWA and NCSU).

STEP 2: “Typical” fundamental properties and their variance due to the variance of AQCs are input into the PRS software for the specific project in question.

STEP 3: Many automated simulations are performed using the PRS software to determine the predicted life from varying the AQCs in different combinations.

STEP 4: The agency sets the performance acceptance criteria and acceptable variance.

STEP 5: Agency develops a QA plan for the project (may be based on current practices).

STEP 6: Pay tables are created based on the change in simulated life.

STEP 7: A bidding specification is developed.

Note: Type of testing done (volumetric, index testing, or fundamental properties) will be dictated by the level of sophistication and accuracy desired by the agency.
Step 1: Contractor reviews the bidding specification and determines **initial job mix formulas** (one for each mix type on the project) using their selected materials in an attempt to meet the specifications.

Step 2: Based on the contractor’s knowledge, experience, and specific materials available, the contractor **evaluates their risk** in meeting the specifications. Based on this risk, the contractor makes one of the following decisions (A, B, or C):

- **A: No Bid.**
- **B: Contractor only does limited testing on the JMFs. Based mostly on volumetric testing and experience and knowledge.**
- **C: Contractor conducts performance testing and/or PBMD to assess risk and determine how to best optimize the mixes to meet the performance criteria and maximize profits.**

Step 3: Contractor makes a **QC plan**, which may or may not be above and beyond what is required by the agency in the specification.

Step 4: The contractor prepares and **submits the bid.**
Step 1: The agency determines the winning bid and awards the contract.

Step 2: The winning contractor selects and submits their JMFs to the agency for approval.

Step 3: The agency reviews the JMFs to ensure they each meet the requirements laid out in the specifications. Each mixture will be either:
- Accepted
- Rejected and require re-design

Step 4: Control strips may be used to verify the properties of the accepted mixes and construction process and the agency approves the JMFs for full production and construction.

Step 5: The agency applies their QA procedure for project monitoring.

Step 6: The project is constructed using the approved mixes. During the project AQCs are measured and changes in mixture properties are calculated using predictive relations.

Note: Regular testing of fundamental properties may be feasible during construction.

Step 7: Contractor pay is based on the AQC data and pay tables in the specifications.
Shadow PRS

- Develop and Evaluate PRS like FULL implementation
- Does not impact contractor pay for the shadow project
- Learning and pre-implementation tool
Current HMA Acceptance Procedures

AC Pavement Data
- In place density
- IRI

AC Mixture Data
- Binder content
- Bulk Specific Gravity
- G_{mm}
- Recovered Blended Agg. Gradation
- RAP/RAS Binder Content
- RAP/RAS Recovered Aggregate Gradation
- TSR
- Aggregate Moisture Content

Pay Factors

Empirical Relations?
Engineering Judgment?
Shadow PRS Acceptance Procedures

AC Pavement Data
- In place density
- IRI

AC Mixture Data
- Binder content
- Bulk Specific Gravity \(G_{mm} \)
- Recovered Blended Agg. Gradation
- RAP/RAS Binder Content
- RAP/RAS Recovered Aggregate Gradation
- TSR
- Aggregate Moisture Content

Empirical Relations?
- Engineering Judgment?
- Pay Factors

Shadow Specification (NCSU Research Effort)
- Engineering Properties
- Predictive Equations
- Performance Testing
- As-Designed Performance
- As-Constructed Performance
- Shadow Pay Factors
Final PRS Acceptance Procedures

AC Pavement Data
- In place density

AC Mixture Data
- Binder content
- Bulk Specific Gravity \(G_{mm} \)
- Recovered Blended Agg. Gradation
- RAP/RAS Binder Content
- RAP/RAS Recovered Aggregate Gradation
- TSR
- Aggregate Moisture Content

Engineering Properties
- Predictive Equations

As-Designed Performance
As-Constructed Performance

Pay Factors
Questions?