

Performance Engineered Concrete Pavement Mixtures

Peer-to Peer Technical Exchange Burlington, Vermont

Cecil Jones Diversified Engineering Services, Inc. September 21, 2016

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

- Background
- Team Members
- Specification Basics
 - Provisional Specification
 - Detailed Commentary
- Next Steps
- Conclusion

Background

≻ MAP-21

- FHWA emphasis on performance
- Linking investments to outcomes
- Industry & Agencies desire better performance
 - Optimized mixture design
 - Improved durability
 - Sustainability

- Innovative new test methods related to performance
- Several being balloted by AASHTO
- Tell the contractor what performance is needed
- Hold industry accountable to meet performance

Background

- Expert Task Group formed in 2013
 - Academia, Industry, SHAs
- Determined the specification should include
 - Strength
 - Cracking
 - Freeze-Thaw resistance
 - Aggregate Stability
 - Workability

Team Members for This Task

- Peter Taylor
- Tom Cackler
- ➤ Tom Van Dam
- Jason Weiss
- ≻ Tyler Ley
- Michael Praul
- Cecil Jones

- "Menu" specification
 Not an off the shelf drop in
- Select from what you want to satisfy the needs you have
- Intended to work for SHAs and local agencies
- Intended to respect organizational traditions while offering performance options

Section	Property	Specified Test	Specified Value	Mixture Qualification	Acceptance	Selection Details	Special Notes
6.3 Co	ncrete Streng	gth					
						-	
	1		· · · · · · · · ·		D		
6.4 ке	ducing Unwa	nted Slab Wa	arping and (Сгаскіпд	Due to	Shrinka	ge (If Cracking is a Concern)
						Ű,	MENU MENU
6.5 Du	rability of Hy	drated Ceme	ent Paste fo	r Freeze	-Thaw [Durab	
							Salads Clastic for + Eliket Neur Deal Greit Salad With Pere Prein Treplakine + Long Print Cheese
6.6 Tra	ansport	1					and output Unstant Pros Rouge Rego
Prope	rties						Sides Barbo Manded Reasone Baked Builded Transport
						_	Yan Peter antio Onipolo Aci Baland Oreany Manaroni + Change
6.7 Ag	gregate Stabi	lity					Mains Making Mapik Rag Dalama Dakate sebat anthe field Datasa Palad Alexa anthe setti Herd Datasa Aspandar
							Dessents Vantile Wedding Oddo with Ragelevery Januar Pilling Ascoroto Homomada Privas
6.8 W	orkability						Bill Light See
							08.26.12

Section 6.3 Conci	Property crete Strength	Specified Test	Specified V	Value	Mixture Qualification	Accentance	Selection Details	Special Notes
6.3.1	Flexural Strength	AASHTO T 97	4.1 MPa	600 psi	i Yes	Yes	Choose	
6.3.2	Compressive Strength	AASHTO T 22	24 MPa	3500 psi	Yes	Yes	either or both	

Specification Basics – Warping and Cracking

Section	Property	Specified Test	Specified Val	Mixtu Qualific		Acceptance	Selection Details	Special Notes
6.4 Redu	cing Unwanted Slab Wa	arping and Crack	ing Due to Shr	inkage (If (Crac	king is a Co	ncern)	
6.4.1.1	Volume of Paste		25%		Yes	No		
6.4.1.2	Unrestrained Volume Change	ASTM C157	420 με	at 28 day	Yes	No		Curing Conditions
6.4.2.1	Unrestrained Volume Change	ASTM C157	360, 420, 480 με	at 91 days	Yes	No	Choose	
6.4.2.2	Restrained Shrinkage	AASHTO T 334	crack free	at 180 days	Yes	No	only one	
6.4.2.3	Restrained Shrinkage	AASHTO TP XXX	σ < 60% f'r	at 7 days	Yes	No		Dual ring test is currently under consideration as an AASHTO Provisional Test Method
6.4.2.4	Probability of Cracking	Appendix X1	5, 20, 50%	as specified	Yes	No		
Comm entary	Quality control check	~	~	~	No	Yes		Variation controlled with mixture proportion observation or F Factor and Porosity Measures

Specification Basics – Paste Durability

Section 6.5

Section	Property	Specified Test	Specified	Value	lixture lification	Acceptance	Selecti Detai		Special Notes
6.5 Dura	bility of Hydrated Cer	ment Paste for Free	eze-Thaw D	urability					
6.5.1.1	Water to Cementitious Ratio	~	0.45	~	Yes	Yes	Choose Either 6.5.1.1 or 6.5.2.1		
6.5.1.2	Fresh Air (Ontent	AASHTO T 152, T196, TP 118	5 to 8	%	Yes	Yes		Choose	
6.5.1.3		AASHTO T 152, T196, TP 118	≥ 4% Air; SAM ≤ 0.2	%, psi	Yes	Yes		only one	
b.5.7.1	Time of Critical Saturation	"Bucket Test" Specification	30	Years	Yes	No	Note 1	Note 2	Variation controlled with mixture proportion observation or F Factor and Porosity Measures
6.5.3.1	Deicing Salt Damage	~	35%	SCM	Yes	Yes			Are calcium or magnesium chloride used
6.5.3.2	Deicing Salt Damage	AASHTO M 224	~	Topical Treatment	Yes	Yes	Choo	se one	Are calcium or magnesium chloride used, use specified sealers
6.5.4.1	Calcium Oxychloride Limit	Test sent to AASHTO	< 0.15g Ca	OXY/g paste	Yes	No			Are calcium or magnesium chloride used

Specification Basics – Transport Properties

Section	Property	Specified Test	Specified V	Value	Mixture Qualification	Accentance	Selection Details	Special Notes
6.6 Trans	sport Properties							
6611	Water to Cementitious Ratio	~	≤ 0.45 or ≤ 0.50	2	Yes	Yes	1 1	The required maximum water to cementitious ratio is selected base on freeze-thaw conditions.
6.6.1.2	Formation Factor	Table 1	≥ 500 or ≥ 1000	~	Yes	Yes	Choose Only One	Based on freeze-thaw conditions. Other criteria could be selected
6.6.2.1	lonic Penetration, F Factor	Appendix X2	25 mm at 30	0 year	r Yes, F	through ρ		Determined using guidance provided in Appendix X2.

Specification Basics – Aggregate Stability

Section	Property	Specified Test	Specified V	/alue	Mixture Qualification	Acceptance	Selectio Detail	Special N
6.7 Aggreg	gate Stability							
6.7.1	D Cracking	AASHTO T 161, ASTM C 1646	~	~	Yes	No		
6.7.2	Alkali Aggregate Reactivity	AASHTO PP 65	~	~	Yes	No		

Specification Basics – Workability

Sec	ction	Property	Specified Test	Specified Value	Mixture Qualification	Acceptance	Selection Details	Special Notes
6.8	Work	ability						
6.	8.1	Box Test	Appendix X3	<6.25 mm, < 30% Surf. Void		No		
6.	8.2	Modified V-Kelly Test	Appendix X4	15-30 mm per root seconds		No		

- Specification describes process and choices
- Includes acceptance requirements
- Includes quality control provisions
 - Contractor submits quality management plan
 - Some minimum requirements listed

> Appendices for new and emerging test methods

- Cracking and volume change
- Formation factor and pore solution resistivity
- Box test
- V-Kelly test
- Transport and pore structure
- Commentary

Commentary (60 pages)

- Detailed discussion of each section
- References for more detailed background

- AASHTO Subcommittee on Materials balloting as a Provisional Standard
 - Will be dynamic for several cycles
- Lead states assisting in demonstration and shadowing on existing projects
- FHWA Mobile Concrete Trailer demonstrating new equipment and test methods
- Workshops to introduce concepts

Next Steps

Provisional Standards can be modified as new methods are developed, and as we learn from early adopters

· · · · · · · · · · · · · · · · · · ·	lication for
Performance Mixtures	Engineered Concrete Pavement
American Association	n of State Highway and Transportation Officials
AASH American Association 444 North Capitol Stre Washington, D.C. 200	n of State Highway and Transportation Officials eet N.W., Suite 249

Conclusion

➤ Why do this?

- Agency can custom design mixtures to meet the needs that exist
- Research produced new test methods
- Allows for better risk allocation
- Allows for innovation
- Shares responsibility for performance with industry

Thank You