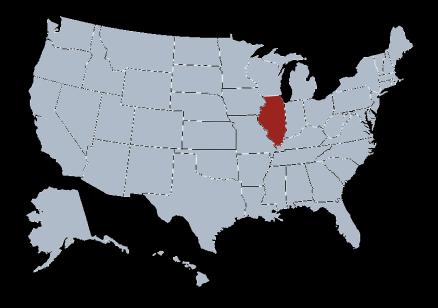


Performance Related Specifications for Concrete Pavement Construction Illinois Tollway's Experience

September 21, 2016

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Capital - Springfield Area - 57,914 sq. miles (25th) Population - 12,830,632 (5th)

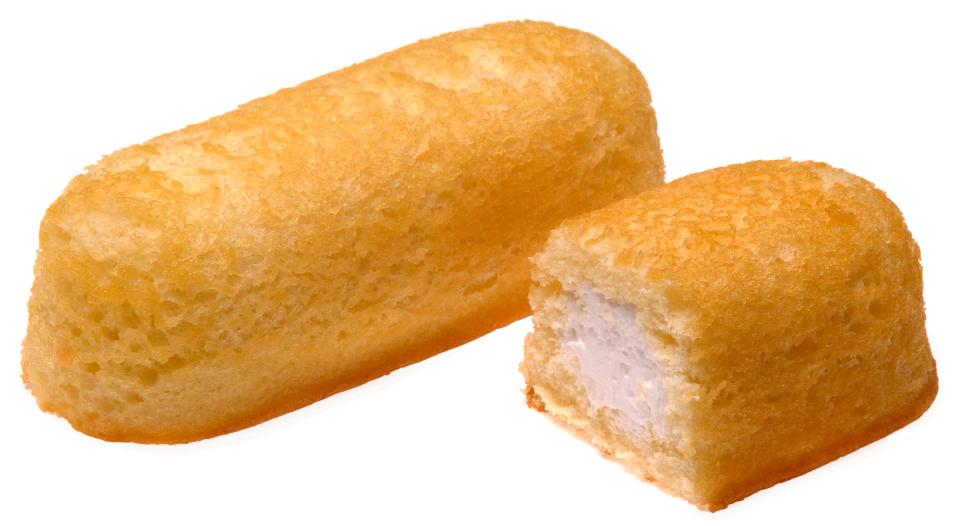

llinois

Professional Sports Teams

Chicago Cubs (National Baseball League) Chicago White Sox (American Baseball League) Chicago Bears (National Football League) Chicago Bulls (National Basketball Association) Chicago Blackhawks (National Hockey League) Chicago Machine (professional Lacrosse) Chicago Sky (Women's National Basketball Association)

State Symbols

Bird – Cardinal Animal – White-tailed Deer Flower – Violet Tree – White Oak Insect – Monarch



World's largest bottle of catsup

Worlds Largest Bakery at 1.8M SF

Twinkies were invented on April 6, 2930 in River Forrest, IL

Originated Ice Cream Sundae

DID YOU KNOW ...?

The world's first farm silo

was invented in Spring Grove, IL.

80% of Illinois is Farmland


Drummer Soil is official soil of Illinois

Where our Governors make our license plates

About the Illinois Tollway

- 286-mile system comprised of four tollways
 - Tri-State (I-94/I-294/I-80)
 - Jane Addams Memorial (I-90)
 - Reagan Memorial (I-88)
 - Veterans Memorial (I-355)
- Opened in 1958 as a bypass around Chicago to connect Indiana and Wisconsin
- Carries more than 1.4 million vehicles per day


 User-fee system – no state or federal gas tax dollars used for maintenance and operations

Project is I-90 from O'Hare airport to Rockford

- Project part of Move Illinois capital program
 - 15-years, \$12-billion
- I-90 Reconstruction/ Widening
 - PRS applied to mainline paving contracts
 - 9 contracts in 2015 / 9 contracts in 2016
 - 2015 contracts \$500 million / \$50 million in PRS-JPCP

Implementation of performance specifications

- Summer to Fall 2013 Shadow Implementation
- March 2014 meeting with Tollway Engineering Management to get approval to move forward
- March to May 2014 Development of specification framework
- July 2014 1st Meeting with Industry to provide overview of PRS & present concept/ideas
- July 2014 First draft of special provision
- Fall to Winter 2014 Multiple meetings revising and changing SP
- April 2015 Training on testing and procedures
- May 2015 Performance specifications in effect

Shadow Performance Related Specifications

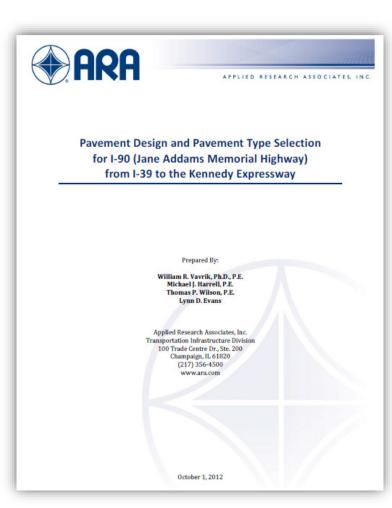
- Develop and evaluate like FULL implementation
- Does not impact contractor pay for the shadow project
- Learning and pre-implementation tool

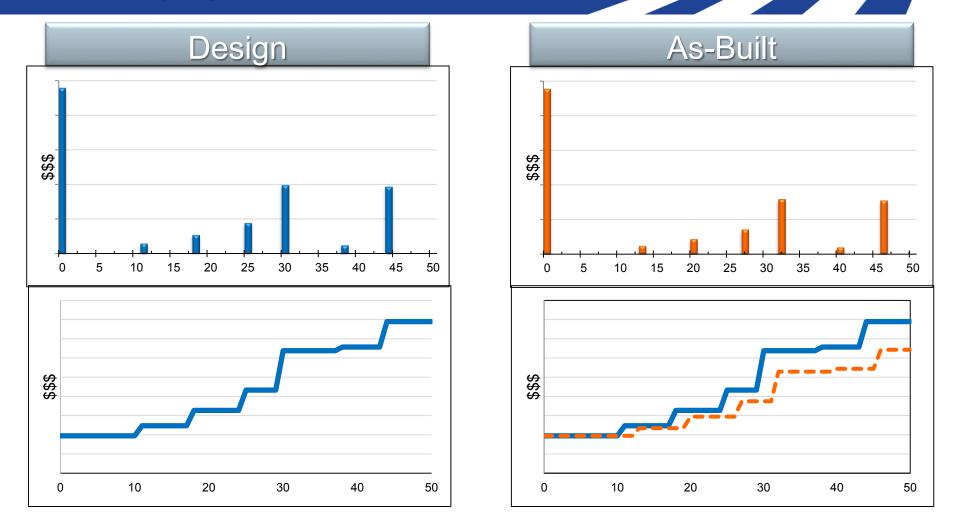
Steps for Implementation of Performance Specifications

- 1. Conduct project coordination meetings
 - select location, gather information, develop sampling & testing plan
- 2. Collect and analyze historical data
 - AQCs, M & R criteria, costs, discount rate, etc.
- 3. Develop and evaluate pay factors
 - PaveSpec, historical evaluation

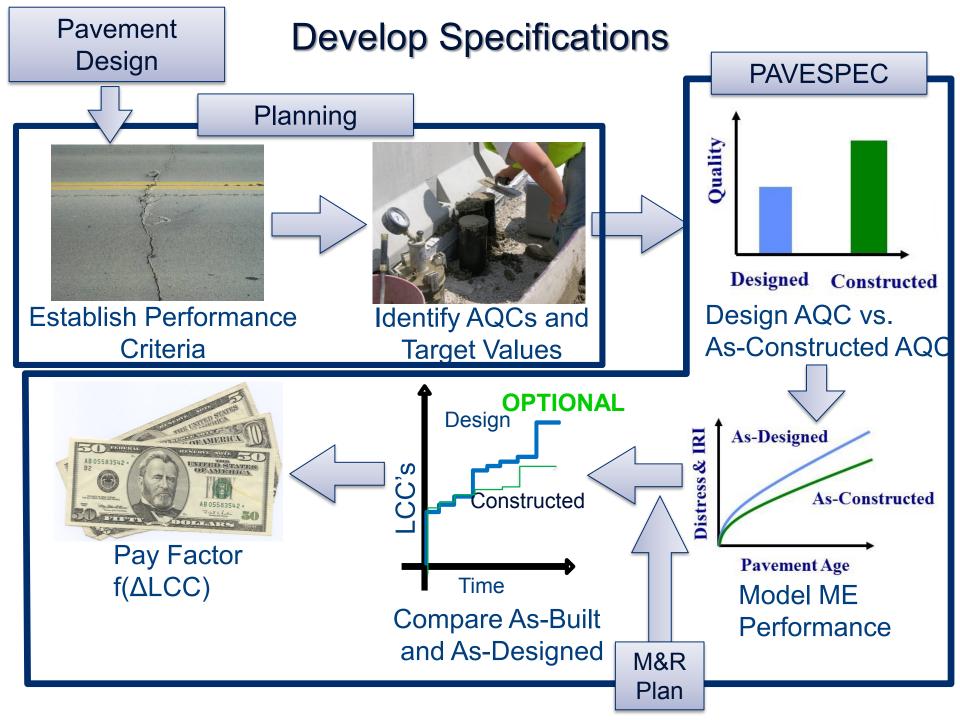
Steps for Implementation of Performance Specifications

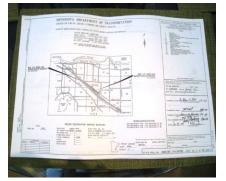
- **4. Prepare for implementation on project**
 layout of lots & sublots, sampling & testing details
- 5. Develop Special Provisions


 followed by meetings, presentations, revisions
- 6. Conduct field sampling and testing
 Database management, dispute resolution
- 7. Evaluate PRS results
 - Incentives/disincentives for each lot


Pavement type selection report (LCCA) is the PRS basis

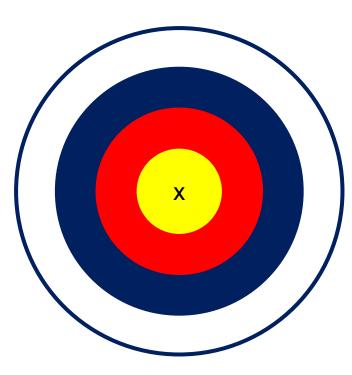
- Traffic
- Design
- Reliability & Performance Criteria
- Support conditions
- M & R strategies
- Costs & other miscellaneous data


Use Life Cycle Cost as basis for PRS pay factor



Rational and defendable pay factors to provide a measure of the value of quality that is directly related to performance

Incorporate Pay Tables Into Specifications & Project Letting


Pavement Construction, Sampling, and Testing Incentive and Disincentive Pay

First Define Acceptance Quality Characteristics (AQC's)

- Measureable
 - More rapid the better
- Correlate with performance
 - Prediction models
- Are under contractor's control
 - Can be varied on the project

Acceptance Quality Characteristics (AQCs)

- Five AQCs
 - Compressive strength
 - Air
 - Thickness
 - Smoothness
 - Dowel Alignment

- Each has
 - Target
 - Rejectable level
 - Maximum level

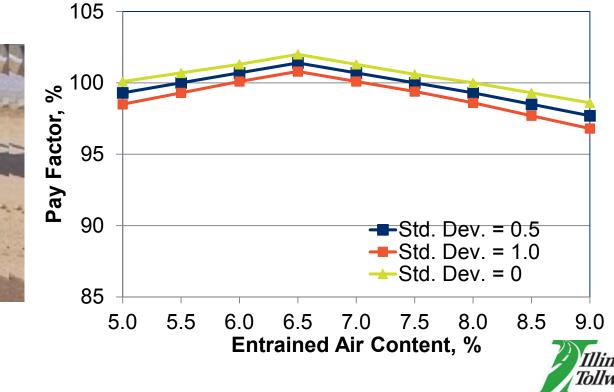
All AQC tests MUST be tested with random sampling

Lots and Sublots

- Lot: All mainline concrete
- Sublot: Division of a lot for testing and sampling
 - One lane wide and ~1,000 ft. long
 - Provisions for pavement block-out
 - Access areas, bridge approach, ramp transition, etc.
- Sublot limits marked on plans (by lane)
- Payment is made on lot basis
- Rejection is made on sublot basis

Non-Conforming Materials

- If RQL not met, contractor to develop Corrective Action Plan
- No incentive/disincentive for a sublot with nonconforming materials.
- Accept or reject concrete on a sublot basis.



Air Content Quality Characteristic

- Test Data submitted through standard, materials information process
 - Air data collected onsite
 - Four tests per sublot; Average value reported for sublot
 - Pay Factor based on Mean and Standard Deviation of sublot values for Lot and interpolated based on the following table

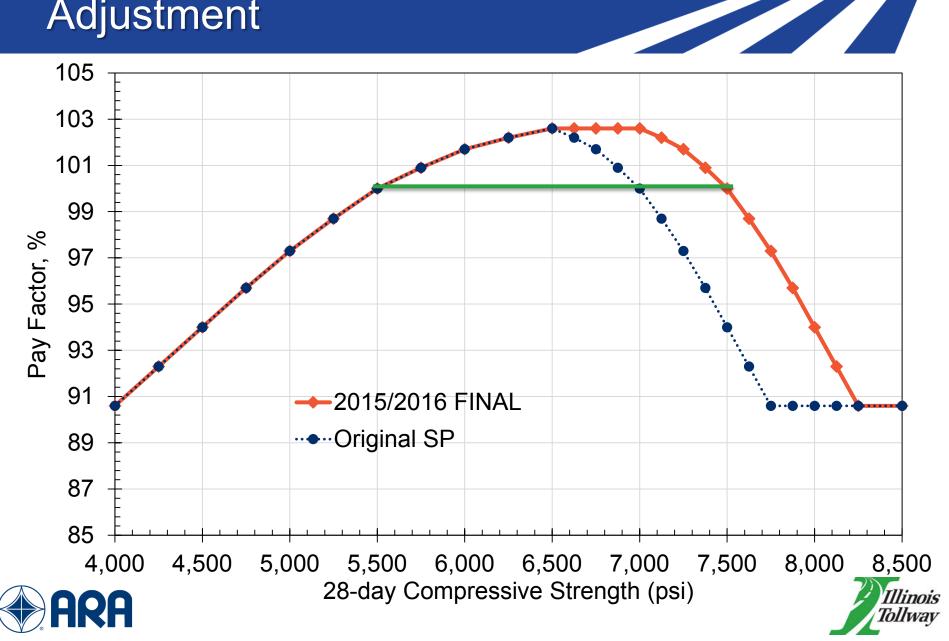
Compressive Strength Quality Characteristic

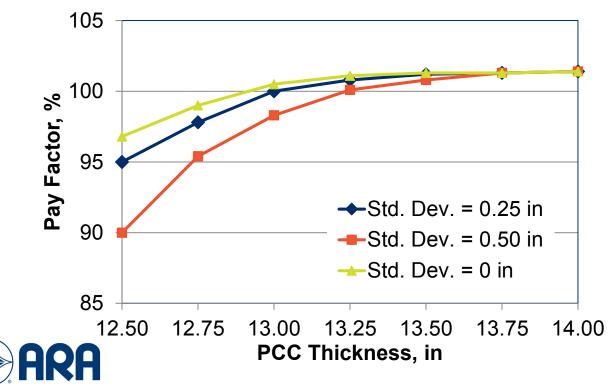
- Test Data submitted through standard, materials information process
 - Two sets of two 6" x 12" cylinders cast at one of four air location
 - First two cylinders broken at 28-days
 - if less than 1,000 psi difference, use average of two values
 - If more than 1,000 psi difference, third cylinder is broken and two closest values (within 1,000 psi) are averaged
 - If none of first three are within 1,000 psi, fourth cylinder is broken, and two closest values are averaged
 - Average reported for sublots; Mean and Standard Deviation based on sublot values
 - Average strength adjusted for values greater than 6,500 psi

Issues Encountered or Lessons Learned

Mix Designs More Important

- Allow for slight mix design adjustments to be quickly approved (7 days)
- Be prepared for many trial batches
- Make the Contractor responsible for preparing and delivering compressive strength cylinders
- Make sure agency's labs cure and test properly

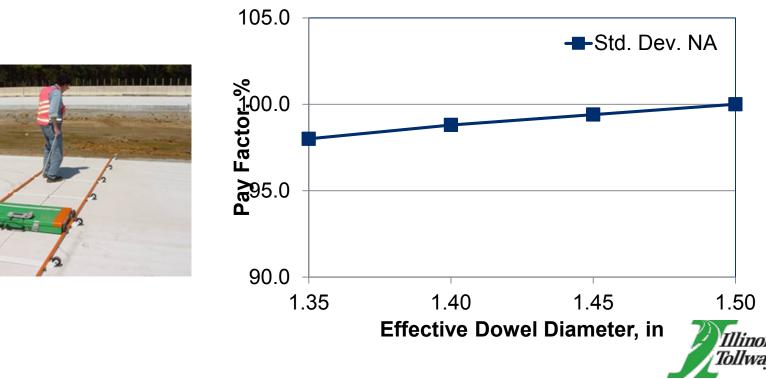

Good Measurement Critical



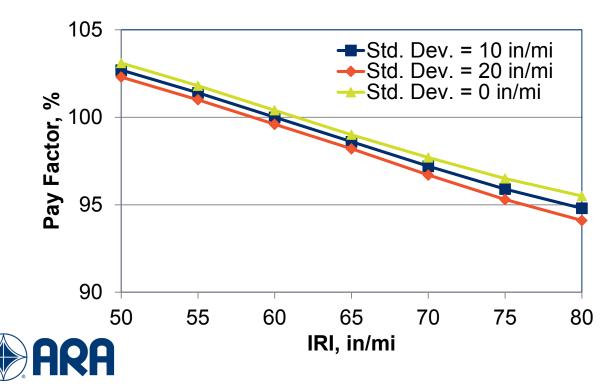
28-day Compressive Strength Adjustment

PCC Thickness Quality Characteristic

- Measured Using MIT T-2 Device
 - Metal discs placed at randomly generated locations
 - Six discs placed, only four thickness readings taken
 - Average of four readings reported for each sublot
 - Mean and Standard Deviation based on sublot values
 - Measurements repeated if grinding performed



Courtesy: www.fhwa.dot.gov


Dowel Bar Alignment Quality Characteristic

- Measured Using MIT Scan Device
 - Five consecutive joints scanned at random location
 - Joint score and effective dowel bar diameter calculated for each joint
 - Average of five readings reported for each sublot
 - Mean and Standard Deviation based on sublot values
 - No incentive for this QC, max PF is 100

Pavement Smoothness Quality Characteristic

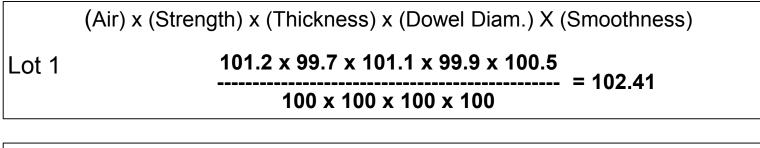
- Measured Using High Speed Profiler
 - Continuous elevation measurements taken in right and left WP for entire sublot
 - IRI calculated for each WP
 - Average of two WP readings reported for each sublot
 - Mean and Standard Deviation based on sublot values

Spreadsheet to Track Construction Quality Data

• Will calculate pay factors even with partial data

This draft spreadsheet was develop	ed by Appl	ied Researc	h Associa	ates, Inc. fo	r the Illinois Tollway.							
It is used for computing the pay adju	ustment ac	cording to	the perfo	rmance-rel	ated specifications for	rigid paver	ments as sp	ecified in:				
PERFORMANCE-RELATED PORTLAND	CEMENT	CONCRETE F	AVEMEN	T, JOINTED	– 13 INCH (Tollway) Effe	ctive: Sep	tember 1, 2	2014				
Please go to tabs Strength PF, Thic								ormation	as request	ted.		
Once information is entered on tho					ea below for total pay a	djustment					 	
OO NOT ENTER anything else or char	nge anythir	ng else on t	his sheet.									
Strength Pay Factor:	na											
Thickness Pay Factor:	na											
Dowel Diameter Pay Factor:	na											
Air Content Pay Factor:	na											
Smoothness Pay Factor:	na											
Calculated Composite Pay Factor:	na											
arculated composite Pay Factor.	114											
Adjusted Composite Pay Factor:	na											
					Enter Bid Price and Co	nforming A	rea below:					
		E	BID PRICE	(\$/sq. yd.):								
		CONFOR	MING ARE	A (sq. yd.):								
		CONTOR										
-	Total P	ay Adju	ustme	nt (\$):	na							
		_,,,			i i i i i i i i i i i i i i i i i i i							

Data distributed to all through Ebuilder



- Overall PF Calculated for Sq. Yd. of PCC-PRS for each contract
 - Overall PF calculated by multiplying all five individual PF's together (Lot 1); only Air, Thickness, and Dowel Diam. PF's used for Lot 2
 - Divide result by 100⁴
 - Incentive capped at 5 percent (Maximum PF = 105)
 - Disincentive capped at 15 percent (Minimum PF = 85)

	(Air) x (Thickness) x (Dowel Diam.)
Lot 2	100.9 x 100.5 x 99.9 = 101.30 100 x 100

2015 Results

	А	В	С	D	E	F	G	H	Ι	
Air Content	100.7	101.1	101.2	101.4	101.8	101.5	101.1	101.0	101.0	
Strength	98.9	100.0	99.9	96.4	102.3	100.2	101.7	99.2	100.4	
Thickness	101.2	101.3	101.1	101.0	100.7	100.1	101.1	100.9	100.8	
Dowel Diam.	99.9	99.9	99.9	100.0	99.9	99.9	99.9	99.8	99.5	
Smoothness	99.2	96.6	100.3	97.2	94.3	94.8	94.5	94.1	96.7	
Composite PF	99.9	98.8	102.4	96.0	98.8	96.4	98.1	94.9	98.3	

Lot 1

Lot 2

	А	В	С	D	E	F	G	Н	I
Air Content		101.4	101.2	101.1	101.6	101.4	100.9	101.0	100.2
Thickness		101.0	100.9	101.0	100.9	100.5	100.5	101.0	100.0
Dowel Diam.		99.9	100.0	100.0	99.9	99.9	99.9	99.9	100.0
Composite PF		102.3	102.1	102.1	102.4	101.8	101.3	101.9	100.2

Contract PF	99.9%	99.4%	102.3%	100.9%	100.3%	99.4%	99.1%	95.2%	98.4%
Overall 2015 Construction Estimate									100.2%

Year over year quality improvement

2015 Composite Results

	А	В	С	D	E	F	G	Н	I
Contract PF	99.9%	99.4%	102.3%	100.9%	100.3%	99.4%	99.1%	95.2%	98.4%
Overall 2015 Construction Estimate									100.2%

	Α	В	С	D	E	F	G
Air Content	100.9	101.1	101.0	101.2	101.1	100.6	101.4
Strength	98.6	101.1	101.4	100	101.4	101.7	101.9
Thickness	100.4	101.1	101.0	101.1	100.7	101.0	101.2
Dowel Diam.	99.9	100.0	100.0	99.9	99.8	99.9	99.9
Smoothness	96.3	99.2	100	95.9	97.4	97.2	97.3
Composite PF	96.1	102.5	103.4	98.0	100.3	100.3	101.6

Overall 2015 Construction Estimate

101.2%

Benefits to Performance Specifications

- Improved design-to-construction communication
- Develop more rational pay factors
- Improved and focused testing by all parties
- Improved understanding of performance by all
- Improved quality focus
- Clearer distinction in roles and responsibilities
- Creates a more innovative environment

Next Tollway Endeavor with PRS

- Develop PRS for continuously reinforced concrete pavements
- Being re-engineered by the Tollway through ARA, U of I, Texas A & M, and Oregon State to be more dependent on the performance of mix and more economical to build

