

Performance Related Specifications (PRS) in the Northeast – Hot Mix Asphalt Perspective

SHRP2 Performance Specifications for Rapid Renewal (R07)

Thomas Bennert, Ph.D., Rutgers University

September 21, 2016

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Presentation Overview

- Introduction
- Guideline to Developing Performance Related Specifications (PRS) for HMA
 - Identifying needs
 - Baseline/target development
 - Sampling/Testing Protocols
- Current "Northeast" Practices
- Summary/Conclusions

Why the Need for PRS for HMA?

- Currently a concern among state agencies that current volumetric mixture design does not ensure good field performance
- Depending on climate, traffic, pavement conditions, different state agencies require different levels of performance
 - Not all HMA is created equal
 - New Jersey rutting, fatigue cracking, reflective cracking
 - Different criteria required for different mix type, location in pavement, and pavement type

Original Intent of HMA Design

Terms (TRB Circular E-C173)

- <u>Performance-Based</u>: Quality Assurance specifications that describe the desired levels of fundamental engineering properties that are predictors of performance and appear in primary prediction relationships
 - Resilient modulus, creep properties, fatigue properties
 - Models that can be used to predict pavement stress, distress, or performance
- <u>Performance-Related</u>: Quality Assurance specifications that describe the desired levels of key materials and construction quality characteristics that have been found to correlate with fundamental engineering properties that predict performance
 - Air voids for HMA; Compressive strength for PCC
 - HMA performance testing(?)

Guideline for Developing Performance Related Specifications (PRS)

Guidelines for Developing PRS

- Know your pavement performance
- Develop a baseline for performance
- Select an appropriate test procedure
- Develop testing & specification structure
- Go back and re-evaluate

Know Your Pavement

- Important to recognize pavement issues
- Testing methods should try to model distress types found in the field
 - Rutting, fatigue cracking, reflective cracking, thermal cracking
 - Mode of failure should be used in the lab
 - Test temperatures should model climate conditions
- Example:
 - New Jersey: Fatigue Cracking
 - Bridge Deck Mix uses Flexural Beam fatigue
 - Bituminous Rich Intermediate Course use
 Overlay Tester

Develop a Performance Baseline

- How would you like your materials to perform?
 - Historical field data (PMS)
 - Database of material properties
 - Performance criteria should be developed using the performance of local materials
 - Try to avoid "adopting" other state's specifications when you do not have history of local material performance
- New Jersey Example: High RAP Specification
 - Performance criteria based on virgin (0% RAP) mix
- NYCDOT: HMA Specification
 - Developing performance criteria based on 30% RAP mix (30% RAP is minimum NYC must use)

- Priorities of test procedure
 - Correlates to field performance
 - Sensitivity to mixture properties
 - Repeatability
 - Ease of use (procedure, test specimen, time and analysis)
 - Availability/Cost
- NCHRP 9-57 Study Mixture Cracking Tests

Thermal cracking	Reflection cracking	Fatigue cracking	Top-down
tests	tests	tests	cracking tests
 DCT SCB-IL SCB (AASHTO TP105) 	 OT SCB-LTRC BBF 	 Beam fatigue SCB-LTRC OT* 	 IDT-Florida SCB-LTRC

*OT for fatigue cracking was added later by request of the panel.

- Example: New Jersey
 - Rutting: Asphalt Pavement Analyzer (AASHTO T340)
 - Fatigue Cracking:
 - Bridge Decks Flexural Beam Fatigue (AASHTO T321)
 - BRIC, HRAP Overlay Tester (NJDOT B-10; TxDOT Tx-248F)
 - Rt 80 in New Jersey
 - 2015 construction
 - NJDOT HPTO mixture
 - Testing indicated 1st 4 nights' production failed rutting criteria

• Example: New Jersey HPTO

Date	Original	RTFO	PG Grade	Jnr (1/kPa)	% Rec	MSCR Grade	δ @ 76C (Orig)	δ @ 76C (RTFO)	APA (mm)
5/27/2015	77	76.6	PG76	0.36	59	PG64E	73.6	68.3	6.56
5/28/2015	78.8	78.8	PG76	0.18	72.9	PG64E	69.5	64.5	6.23
5/29/2015	79.6	79.6	PG76	0.17	74.4	PG64E	69.9	64.5	6.5
6/3/2015	78.3	78.7	PG76	0.16	75.5	PG64E	69.6	63.5	6.84
6/4/2015	86.5	79	PG76	0.17	92.4	PG64E	58.9	58.4	3.66
6/5/2015	84.2	78.6	PG76	0.14	77.6	PG64E	65.4	64.8	3.87
6/9/2015	87	81.1	PG76	0.061	89.2	PG64E	60.7	60.1	3.92
6/10/2015	83.7	81.7	PG76	0.1	80.2	PG64E	66	61.8	4.32
6/11/2015	86.3	80.9	PG76	0.051	91.3	PG64E	60.8	58.4	3.98
6/12/2015	82.4	81.2	PG76	0.048	91.3	PG64E	66.8	60.4	3.73
6/17/2015	87.5	81.8	PG76	0.046	92.2	PG64E	60.6	57.9	3.83
6/18/2015	87.6	82.6	PG82	0.041	92.4	PG64E	61.2	59.2 @ 82C	2.94
6/19/2015	86.5	82.3	PG82	0.041	92.4	PG64E	59.2	59.2 @ 82C	2.73
6/24/2015	83.8	79.5	PG76	0.074	89.1	PG64E	62	59.7	3.99

- Example: New Jersey HPTO
 - PMS Test Data Collected July 2016

- Be careful of adopting test methods and criteria developed by other agencies
 - Should you consider a rutting and fatigue cracking to "balance" performance?
- Be careful of selecting test procedures where results may be dependent on multiple failure mechanisms
 - Example: Hamburg Wheel Tracking (TxDOT) for rutting
 - Running test under couples stripping and rutting which mode of distress dominates?

MATHY MIX DESIGN RUT TEST WITH PG 58-28 TESTED IN HAMBURG WET AT 50° C & DRY @ 58°C

Develop Specification Structure

- Stage of testing
 - Should it be included during mix design? Test strip? QC/QA?
- Frequency of testing
 - Lot, night's production?
 - Keep in mind time requirements of the test method
- Responsible testing laboratory
 - State lab, consultant, university partner, asphalt plant under state inspection
- Handling failing results
 - Remove/replace, pay adjustment, stop production to adjust mix

Develop Specification Structure

- Example: New Jersey
 - Testing conducted;
 - During mix design, required test strip, 1st and every other Lot
 - Small production quantities are tested once per night production
 - Testing laboratory;
 - Up until 1/2016 University Partner (Rutgers University AMRL Accredited)
 - 1/2016 Present NJDOT Central Laboratory
 - Rutgers helped to install equipment and provide training on sample fabrication, testing, and analysis
 - Handling failing results
 - Mix design must conduct redesign until passes
 - Test strip must conduct another test strip until passes
 - Mainline pay adjustment (negative only at this time)

Develop Specification Structure

Table 902.11.04-2 Performance Testing Pay Adjustments for HMA HIGH RAP					
	Surface	Course	Intermedia		
	PG 64-22	PG 76-22	PG 64-22	PG 76-22	PPA
APA @ 8,000 loading cycles, mm (AASHTO T 340)	$t \le 7$ 7 > t > 10 t \ge 10	$t \leq 4$ 4 > t > 7 $t \geq 7$	$t \le 7$ 7 > t > 10 t \ge 10	$t \leq 4$ 4 > t > 7 $t \geq 7$	0 - 1 - 5
Overlay Tester,	t ≥ 150	t ≥ 175	t ≥ 100	t ≥ 125	0
cycles	150 > t > 100	175 > t > 125	100 > t > 75	125 > t > 90	- 1
(NJDOT B-10)	t ≤ 100	t ≤ 125	t <u><</u> 75	t <u>< 90</u>	- 5

Go Back and Re-evaluate

Go Back and Re-evaluate

2015 HPTO – retained binder samples

HPTO?

- Need to re-evaluate asphalt binder specification for

Current "Northeast" State Performance Related Specifications

- Brief email survey sent out to "Northeast" states regarding current/potential use of PRS
 - 1. Is your state using PRS, and if so, at what level?
 - 2. Who conducts the testing?
 - 3. What pavement distresses are you concerned with?
 - 4. What performance tests are you using?
 - 5. What types of asphalt mixtures are you using PRS?
- States responding
 - 8 Northeast (CT, DE, NH, NJ, NY, PA, RI, VT) + Missouri

- At what level is your state using PRS?
 - 2 states using/developing PRS solely for mixture design acceptance
 - 1 state using/developing PRS for mixture design and Quality Acceptance
 - 2 states using/developing PRS for quality acceptance
 - 2 states still working on PRS
 - 2 states not interested at the moment

- Who is/would be responsible for testing within your PRS?
 - 3 states using solely their agency laboratory
 - 1 state combining agency and consultant services
 - 2 states combining agency and university partner
 - 1 state requiring contractor to hire accredited laboratory

- What pavement distresses are you most concerned with?
 - Fatigue cracking (7 states)
 - Thermal cracking (6 states)
 - Rutting (5 states)

- What performance tests are you using/considering using?
 - Rutting
 - Hamburg Wheel Tracking: 3 states
 - Asphalt Pavement Analyzer: 2 states
 - AMPT Flow Number: 1 state
 - Fatigue cracking
 - Semi-circular Bend (SCB): 3 states
 - Overlay Tester: 2 states
 - Flexural Beam Fatigue: 2 states
 - Thermal cracking
 - Disc Compact Tension (DCT): 1 state

What performance tests are you using/considering using?

Mix D	esign	Quality Control		
	Flow Number		Hamburg	
Rutting	ΑΡΑ	Rutting	ΑΡΑ	
	Hamburg			
Fatigue Cracking	Flexural Beam		Flexural Beam	
	Overlay Tester	erlay Tester Fatigue Cracking		
	SCB		SCB	
Thermal	N.A.	Themesel	DCT	
		Inermai		
Сгаскіпд		Сгаскіпд		

- What types of asphalt mixtures are you concentrating PRS on?
 - Specialty mixes (High RAP, Bridge Deck, etc): 3 states
 - High traffic volume: 1 state
 - When job requires > 6000 tons: 1 state
 - All HMA: 1 state

Summary/Conclusions

- HMA volumetrics do not tell the whole story
 - Used as a surrogate for actual performance testing
 - Increased use of polymers, WMA, recycled binders can change performance without changing volumetrics
- PRS/PBS can provide confidence to state agencies that HMA designed and produced will perform to a required level
- Many layers within PRS/PBS that agencies must consider
 - Not a one size fits all. Agencies need to develop specifications that best works for their traffic, pavement, and climate conditions

Thank you for your time!

Thomas Bennert, Ph.D., Rutgers University Center for Advanced Infrastructure & Transportation bennert@rci.rutgers.edu 609-213-3312

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

