ABC in Nevada
PBES/ABC Practices in Nevada – Past, Present and Future

Nevada Department of Transportation
Mark Elicegui, Chief Structures Engineer
Troy Martin, Asst. Chief Structures Engineer - Design
May 19, 2015
Presentation Overview

• Executive Overview
 – Department, Structures Capital Programs, Division Org & Inventory
 – ABC in Nevada
 • Barriers to Implementation
 • Planning and Decision Making
 – ABC Project Specifics
 • Project Details
 • Lessons Learned
 – ABC Activities
 • Education and Research
 • Summary, Future Efforts
Annual Program

- Department Annual Capital Outlay (approx)
 - $1 Billion.
 - $380 Million – Fed Gas Tax
 - $420 Million – State Gas Tax
 - $200 Million – State other (Bonds, etc.)
- HBP Capital Outlay Funds (approx $10.5 million, 1% of total budget)
 - Bridge replacement
 - Seismic retrofit
 - Scour Countermeasures
Organization & Inventory

- Centralized Design & Inspection
 (20 Design, 9 Inventory/Inspection, 3 NDT)
- Designs are typically governed by Seismic Design
- 2014 Data: Approximately 1,900 bridges; 1100 State Owned.
 (150 Steel, 600 Concrete, 300 RCB’s)
- 34 state & local bridges considered structurally deficient
- Aging Inventory. Approximately 33% of state inventory was constructed
 in the 1960’s as part of Interstate System
ECONOMIC/POLITICAL ISSUES

- Highest unemployment rate in the country (12.0%) in 2012
- Employment of local contractors, labor force a sensitive political issue (Only bridge slide performed by out-of-state contractor)

PBES
- Currently, no PCI certified precasting facilities in state or AISC certified bridge fabricators
- Historically, precast girders have not been cost competitive due to shipping costs

ABC
- Limited local experience
PBES/ABC Implementation Barriers:

- **DEPARTMENT PERSONNEL**
 - Design Staff, Construction Inspection and Contractors
 - Unfamiliar with ABC techniques. May require additional education and training.
 - New Information required: Plan Details, Materials,

- **CONSTRUCTION, LONG TERM PERFORMANCE**
 - Hydraulic/Scour Issues may impact GRS-IBS projects
 - Industry must improve QA/QC processes
 - Concern over long term performance/durability. Seismic and service loads. Long term performance of new details is
PBES/ABC Implementation Barriers: ABC Planning and Decision Making

• Currently, no established Departmental policy to support implementation of PBES/ABC projects – evaluated on case by case basis

• FHWA report – "ABC Decision Making and Economic Modeling Tool" - Developed at Oregon State University for the Oregon DOT and FHWA - NDOT is evaluating for use by the Department

• Public/stakeholders can be misinformed regarding project costs/benefits
PBES/ABC Projects

Safety Crossings
- Performance Specs
- Temporary Road Closures

10 Mile Summit

HD Summit
ABC Projects

• Recent Contracts (# of Structures) – Bridge Costs; ABC Elements
 • Contract #3407 Awarded March 2010. HD Summit Animal Crossing
 • 1 Precast Arch w/Full Ht MSE Wall Panels. DBB w/Perf Spec, Structure cost $1.5 million
 • Contract #3388 Awarded July 2009. 10 Mile Summit Crossing
 • 1 Precast Arch w/Full Ht MSE Wall Panels. DBB w/Perf Spec, Structure cost $1.3 million

• Challenges
 • Design: Developing details and performance spec info
 • Discussion with PBES fabricators during plan development of safety crossings
 • Construction: PBES tolerances, MSE Wall fit-up during backfilling, technical oversight, coordinating field revisions
PBES/ABC Projects

B-1942 Tuscarora

Bridge Replacements
• Performance Specs
• Prefabricated Bridge Rail/Headwalls/Wingwalls
• Structure Placed in 1 Day
Recent Contracts (# of Structures) – Bridge Costs; ABC Elements

- 1 Precast Arch, Headwall/Barrier Rail. DBB w/Perf Spec - $220 k
- Challenges:
 - Design of TL-3 barrier rail connection required coordination with manufacturer
 - Hydraulics concern regarding scour required additional concrete floor slab & rip rap
PBES/ABC Projects

Safety Crossings
- Performance Specs
- Crossovers

I-80 Silverzone
ABC Projects

Recent Contracts (# of Structures) – Bridge Costs; ABC Elements

- Contract #3313DB Awarded in June 2006. $242 Million Project Cost
- I-15 North D/B included 6 structures with Precast AASHTO I Girders
- Estimated value/cost of structures: $15.3 Million
- Challenges: End diaphragm & pier diaphragm details, girder curing specifications
I-15 DB North End Diaphragm

I-15 North Design-Build
• Precast Girders

November 18, 2011
PBES/ABC Projects

Mesquite Design-Build
- Precast Girders
- Partial Depth Precast Deck Panels

I-15 South Design-Build
- SPMT bridge move
ABC Projects

• **Recent Contracts (# of Structures) – Bridge Costs; ABC Elements**
 • Contract # 3447DB Awarded March 2011. Mesquite Bridge Replacement. 2 Lateral Bridge Slides & use of partial depth deck panels. Estimated structure value $1.1 million
 • Challenges:
 • Proposal Evaluation, Award
 • Construction:
 • Slide damaged permanent bearings, requiring replacement of 3 bearings
 • Significant coordination/interaction with Design staff required
 • Abutment joints, precast deck panel connections
 • Seismic restraint.
 • Experienced reflective cracking in CIP deck
Mesquite Deck Details
Additional PBES/ABC Activities
Education and Research

- Participation in numerous ABC showcase events in Utah (3+) and Arizona by Management and Design Staff.
- NHI Webinars
- NCHRP Scan 11-02 ABC Seismic Connections - 2012
- GRS-IBS Workshop – FHWA/NDOT - Carson City, 2013
- Current research with UNR on precast deck panels, precast
Additional PBES/ABC Activities
Summary, Future Efforts

• NDOT experience includes: PBES, Bridge slide, and SPMT (completed May/June 2012 on I-15 D/B South (new end span)).
• Continuing work on GRS-IBS projects. Potential for additional bridge slides.
• Potential for ABC opportunities on major Design – Build projects.
• Evaluation of the “ABC Decision Making and Economic Modeling Tool”
• Research underway for precast deck panels, columns.
• Open to opportunities: Urban areas – MOT, Remote locations, GRS-IBS
 – ABC, PBES consideration must be based on project issues/benefits
 – Avoid misinformation regarding project costs/benefits
 – “It’s got to be the right application and fit for the project”

Questions?