Accelerated Bridge Construction in Connecticut
Accelerated Bridge Construction
ConnDOT Practices

Consultant Engineering Memorandum 11-05 issued April 29, 2011 - encouraged consideration of ABC design methodologies for following reasons

- Improve work zone Safety
- Minimize disruption to traveling public & surrounding area
- Maintain and improve construction quality
- Reduce Construction duration
- Reduce life cycle costs and environmental impact
Southington - Out with the old

Connecticut Department of Transportation
Southington – In with the new

Connecticut Department of Transportation
Middletown weekend replacement

Connecticut Department of Transportation
Another Successful DOT Accelerated Bridge Replacement Project: Route 17 Bridge Over Long Hill Brook in Middletown

The Connecticut Department of Transportation has completed another successful Accelerated Bridge Construction (ABC) project – this one in Middletown. The Route 17 Bridge over Long Hill Brook was replaced over the weekend and reopened nine hours ahead of schedule.

“With a lot of pre-planning, hard work by the project personnel and support services along with good weather, Route 17 was able to reopen in time for morning commuter traffic and school buses at 6:15 a.m. Monday,” said DOT Commissioner James P. Redeker. “Nine hours may not seem like a big deal, but to commuters, school kids, emergency services and area residents, any time saved is a good thing.”
Weston – Bridge in a backpack

Connecticut Department of Transportation
Weston – 2 month detour

Connecticut Department of Transportation
What will CTDOT be doing?

- PBUs – Route 4, Harwinton
- GRS-IBS abutments – I-84 off-ramp, Manchester
- Slide – I-95, Waterford
- SPMTs -Route 1/I-95, Stamford
Harwinton – PBUs

Connecticut Department of Transportation
Accelerated Bridge Construction

Decision Matrix

- ConnDOT ABC decision matrix soon to be released

- ConnDOT Decision Matrix based on Utah Example but
 - Included estimated construction inspection overhead costs associated with differing project durations for conventional versus ABC construction.
 - Included measures to weigh:
 - Cost of conventional construction with overbuild and/or temporary construction with minor long term traffic impact
 vs.
 - Cost of ABC project with road closure, detour or more significant short term traffic impact.
Accelerated Bridge Construction

Decision Matrix

Review Sample Project No. 152-157, Waterford
For ABC potential

Project Data, plans are finalized

- I-95 NB and SB over Oil Mill Road
- Bridge Nos. 00352A and 00352B
- Twin Short and Narrow Single Span Structures
- Superstructure replacement required
ABC Decision Matrix

Site Information
- **Project Description:** Project No. 1234, Location: 123 Main St, City, State.
- **Bidders’ Requirements:** Bidders must comply with all state and local regulations.

Prop. ABC Method
- **Method:** Direct Bidding.
- **Primary Benefit:** Cost Savings.

Conventional Construction Method
- **Method:** Traditional Bidding.
- **Primary Benefit:** Lower Risk.

Roadway on Bridge
- **Average Daily Traffic:** 5000 vehicles per day.
- **Capacity:** 6000 vehicles per day.

Tidal Sluice Bridge
- **Average Daily Traffic:** 4000 vehicles per day.
- **Capacity:** 5000 vehicles per day.

Preliminary Cost Evaluation
- **Estimated Conventional Construction Cost:** $2,000,000.
- **Estimated ABC Cost:** $1,500,000.

Cost Analysis
- **Cost Savings for ABC:** $500,000.

ABC Rating
- **Audited Rating:** 87.
- **Rationale:** Meets all criteria with slight modifications.
<table>
<thead>
<tr>
<th>ABC Rating</th>
<th>Score</th>
<th>Weight Factor</th>
<th>Adjusted Score</th>
<th>Maximum Score</th>
<th>Adjusted Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Traffic</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>User Impact Reduction</td>
<td>1</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>Bridge Classification</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Bridge Location</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Use of Typical Details</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Work Zone Geometry</td>
<td>4</td>
<td>8</td>
<td>32</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Site Conditions</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Railroad Impacts</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cost Analysis</td>
<td>5</td>
<td>40</td>
<td>200</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>Envir. /Water Handling</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waterway Limitations</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Score 362</td>
<td>Max. Score 540</td>
<td></td>
</tr>
</tbody>
</table>

ABC Rating

67

ABC Rating Scale

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-100</td>
<td>Use ABC</td>
</tr>
<tr>
<td>40-60</td>
<td>Consider ABC</td>
</tr>
<tr>
<td>0-40</td>
<td>Do not use ABC</td>
</tr>
</tbody>
</table>

Note: Weight factors determined by CTDOT. Do not adjust factors without prior consultation.
Waterford – Slide

Connecticut Department of Transportation
SPMTs - Bridge 00037
U.S. Route 1 over I-95, Stamford

Connecticut Department of Transportation
Stamford - SPMTs

Connecticut Department of Transportation
Contact Information

Tim Fields, P.E.
Principal Engineer, Bridge Consultant Design
(860) 594-3217
Timothy.Fields@ct.gov

Mary E. Baker, P.E.
Project Engineer, Bridge Management
(860) 594-3402
Mary.Baker@ct.gov