Designing For 100 Year Service Life:
Integrating Durability and Structural Design

Date Here, 2015

Anne-Marie Langlois, P.E.
Don Bergman, P.E.
Brad J. Pease, Ph.D.
Agenda

• Introduction
• *fib* Bulletin 34 Model Code for Service Life Design
 – Case Studies
 • The New NY (Tappan Zee) Bridge
 • Ohio River Bridges: Downtown Crossing
• Conclusion
Service Life Challenges for Infrastructures

• Structural concrete:
 – A universal building material
 – A possible universal building problem
• Severe environmental exposures
• Reactive materials
• Poor structural detailing
• Premature degradation leads to:
 – Loss of serviceability
 – Increased operations and maintenance costs
 – Premature end of service life
How is service life currently considered?

- **Structural design standards:**
 - Do not specifically account for service life
 - Fail to quantify durability limit states

- **Codes and standards as design basis:**
 - Assumed life is typically 75 years
 - Take no account of specific environment
 - Take no account of specific material properties
 - Make no use of deterioration models
 - No metric to quantify durability
 - Knowledge base is 10-30+ years
 - "Deemed to satisfy rules"
Solutions?

• Performance and design requirements that owners and designers can use
• Service life design using a rational probabilistic approach
• Transform subjective concept of "durability" into a actual design methods and tools for designers that permit optimization of design for service life
• Further improvements in understanding of:
 • environmental loadings – exposure
 • service life resistance - deterioration mechanisms
 • modeling methods for deterioration
• Optimization of life-cycle costs
fib Bulletin 34 Model Code for Service Life Design

- Written and distributed by the International Federation of Structural Concrete (fib)
- A reliability-based service life design methodology for concrete structures
 - Similar to Load-Resistance Factor Design
- ISO 16204:2012 Service Life Design of Concrete Structures
• All degradation mechanism addressed with 1 of 2 strategies
• Avoidance approach applied for:
 – Carbonation-induced corrosion
 – Sulfate attack
 – DEF
 – AAR
 – Freeze/thaw degradation
• Full probabilistic approach for:
 – Chloride-induced corrosion
1. Define exposure zones and degradation mechanisms
2. Select limit state
3. Design Parameters
 - Materials
 - Concrete quality
 - Concrete cover
4. Project Specifications
5. Construction → pre-testing and production testing
New NY Bridge (Tappan Zee)

• **Project description**
 – Total length: 16,013 ft.
 – Main span length: 1,200 ft.

• **B&T’s role**
 – Structural design for the main span bridge
 – Corrosion Protection Plan for the main span bridge and approach span bridges
 – Operations and maintenance planning
 – Structural health monitoring system design
 – Ship impact assessment

• **Project requirements**
 – 100-year service life before major maintenance for non-replaceable components
1. Define exposure zones and degradation mechanisms
2.) Select limit state
 – Depassivation of reinforcement marks end of service life
 – Occurs when critical chloride threshold is reached at reinforcement
 – Serviceability limit state:
 • 10% probability that corrosion will initiate within the service life
 • 90% probability that it will not!
3.) Design Parameters

- Depassivation of reinforcement marks end of service life
- Fick's 2nd law-based model provides time, depth where critical chloride threshold reached
- Probabilistic consideration of cover thickness (d_c), critical chloride threshold
- All input are probabilistic variables.
Service Life Assessment

3.) Design Parameters

4.) Input in Project Specification

<table>
<thead>
<tr>
<th>Exposure Zone</th>
<th>Structural Element</th>
<th>Mix 1</th>
<th>Mix 2</th>
<th>Mix 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal cover</td>
<td>Max. w/cm</td>
<td>Max. mean Chloride Migration Coefficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[in]</td>
<td>[\text{-}]</td>
<td>$D_{28} \times 10^{-9}$ [in2/s]</td>
</tr>
<tr>
<td>De-icing salt spray</td>
<td>Towers, pier caps, abutments</td>
<td>3.0</td>
<td>14.1</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>Deck</td>
<td>0.40</td>
<td>11.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Concrete barriers</td>
<td>2.75</td>
<td>12.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Atmospheric</td>
<td>Towers, pier caps, pier columns</td>
<td>3.0</td>
<td>15.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Splash</td>
<td>Towers, pier caps, pier columns</td>
<td>3.0</td>
<td>15.0</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>Pile caps</td>
<td>4.0</td>
<td>9.9</td>
<td>12.0</td>
</tr>
<tr>
<td>Submerged</td>
<td>Concrete plug for piles</td>
<td>2.5</td>
<td>15.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>
5.) Construction → Pre-testing and production testing
 - fib Model Code is based on NT Build 492: Rapid Chloride Migration Test
 • measure the migration coefficient of concrete at 28 days
 • direct input parameter

![Diagram with labels](image)

- a: rubber sleeve
- b: solution of 0.2 M KOH
- c: anode (stainless steel)
- d: concrete specimen
- e: solution of 3-10% NaCl in 0.2 M KOH
- f: cathode (stainless steel)
- g: plastic support
- h: container
• **Project description**
 – Interstate 65 corridor Kentucky-Indiana
 – Total length: 2,106 ft.

• **B&T's role**
 – Structural design for the main span bridge
 – Corrosion Protection Plan for the main span bridge

• **Project requirements**
 – 100-year service life for non-replaceable components
How does this concrete durability study affect the structural design?

- Quantifiable requirements for the concrete quality
- Concrete cover
- Type of reinforcing steel

<table>
<thead>
<tr>
<th>Ohio Structural Element</th>
<th>Originally Planned</th>
<th>Analysis Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile caps</td>
<td>2.5 inch Epoxy bars</td>
<td>2.0 inch Black bars</td>
</tr>
<tr>
<td>Tower leg exterior</td>
<td>1.5 inch Epoxy bars</td>
<td>2.0 inch Black bars</td>
</tr>
<tr>
<td>Barriers (front face)</td>
<td>2.5 inch Epoxy bars</td>
<td>2.75 inch Black bars</td>
</tr>
</tbody>
</table>
What about the non-concrete elements?

- Structural steel
 - No deterioration models available
 - Use of coating systems
 - ISO, NACE, and other documentation to help quantify the time to a full overcoat depending on the exposure conditions and type of coating system
 - Use of sacrificial thickness
 - ISO and other documentation to help quantify the sacrificial thickness depending on the exposure conditions
 - Selection of alternative materials, resistant to corrosion in the prevailing exposure conditions
- Replaceable structural components such as bearings, joints, stay cables, drainage pipes, access equipment, etc.
 - No deterioration models available
 - Rely on best practices, past experience, and manufacturers recommendations
How can one implement service life design?

- First-time implementation provides greater value on a **new** structure located in a **typical/common** environment
 - Characterize the local environment
 - Study is transferable to other structures exposed to a similar environment
 - Address service life requirements for all key components:
 - Non-replaceable components: foundations, substructure, superstructure
 - Replaceable components: joints, bearings, barriers
 - Solid base for technical and practical knowledge
 - Build knowledge and understanding through a typical case, then expand to tackle more complex problems (existing structures and rehabilitation, use of non-conventional materials)
 - Increased understanding will benefit the RFP process of future projects
 - Know what you need and what to ask for
Conclusion

• Owners and designers need a modern service life design standard, current North American design standards are lacking
• Scientific approach to quantify service life
 – fib Bulletin 34 / Probability-based mathematical modelling
 – Environmental loads and materials resistances
 – Defined durability requirements
• First-time implementation on a new structure in a typical environment provides greater value
• Durability requirements integrated into structural design, construction, operations & maintenance
Questions?

- Anne-Marie Langlois amln@b-t.com
- Don Bergman dwb@b-t.com
- Brad Pease brpe@b-t.com