

Techniques to Fingerprint Construction Materials (R06B)

X-ray Fluorescence spectroscopy

Maria Chrysochoou, Associate Professor, University of Connecticut Derek Nener-Plante, Maine Department of Transportation Danny Lane and Joe Kerstetter of the Tennessee Department of Transportation

Webinar August 22, 2018

AMERICAN ASSOCIATION of State Highway and Transportation Officials

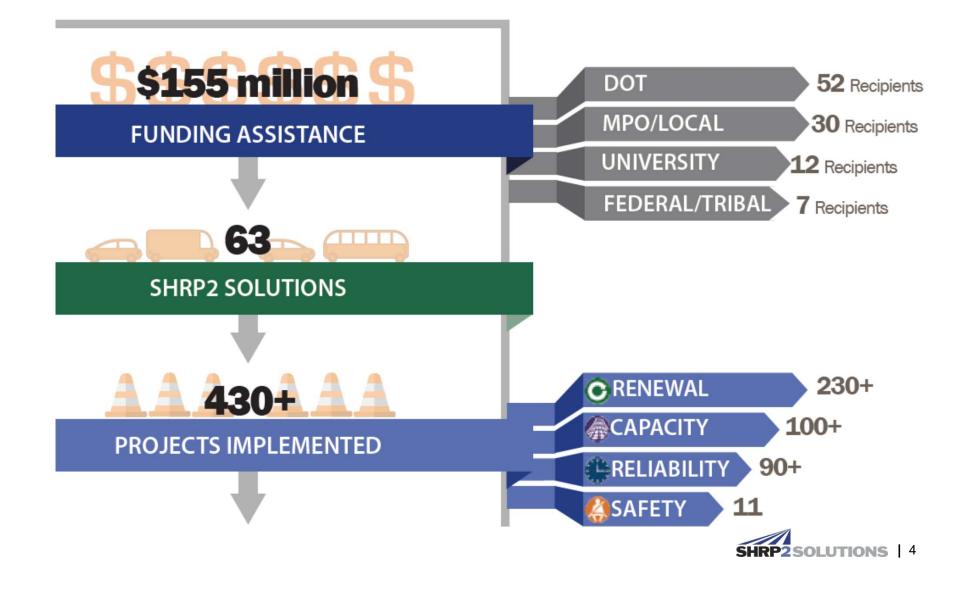
Webinar Agenda

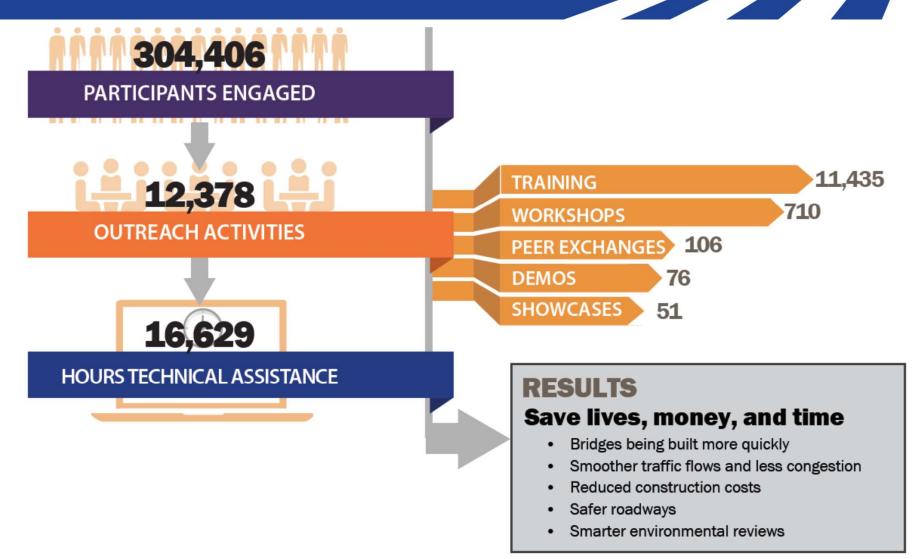
- AASHTO & FHWA Introduction
- R06B Overview
- Principle of X-ray Fluorescence spectroscopy
- XRF applications Maine DOT evaluation
- XRF applications Tennessee DOT evaluation
- Questions & Answers

Focus Areas

Safety: fostering safer driving through analysis of driver, roadway, and vehicle factors in crashes, near crashes, and ordinary driving

Reliability: reducing congestion and creating more predictable travel times through better operations


Capacity: planning and designing a highway system that offers minimum disruption and meets the environmental and economic needs of the community


Renewal: rapid maintenance and repair of the deteriorating infrastructure using already-available resources, innovations, and technologies

SHRP2 Implementation: INNOVATE . IMPLEMENT. IMPROVE.

SHRP2 Implementation: INNOVATE . IMPLEMENT. IMPROVE.

(R06B) Techniques to Fingerprinting Construction Materials

Portable Spectroscopy Technology

RESEARCH: Explore expanded use of portable spectroscopy technologies in their ability to analyze commonly used construction materials in the field to aid in acceptance.

SOLUTION:

- Summary of Portable Methods & potential use for various materials.
- XRF For testing pavement markings and epoxy coatings for example.
- FTIR For evaluating Polymer in HMA, as well fingerprinting admixtures in PCC (accelerators, retarders, curing compounds)
- Generic testing procedures with sampling and data analysis guidelines, as well as proposed standards of practice.

X-Ray Florescence (XRF)

Attenuated Total Reflectance Fourier Transform Infrared (ATR FTIR) Spectroscopy

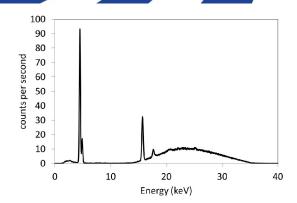
Maria Chrysochoou, Associate Professor, University of Connecticut

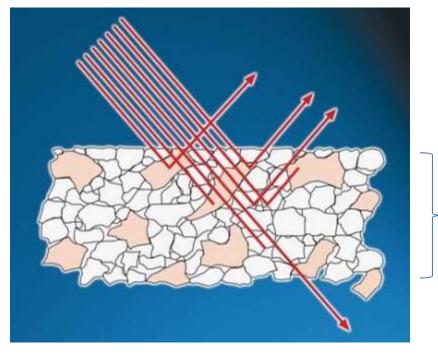
Principle of X-ray Fluorescence spectroscopy

R06B Technologies

X-Ray Fluorescence Spectroscopy (XRF)

- Suited for measuring elemental composition of solids
- Handheld equipment that can be used both in the lab and in the field

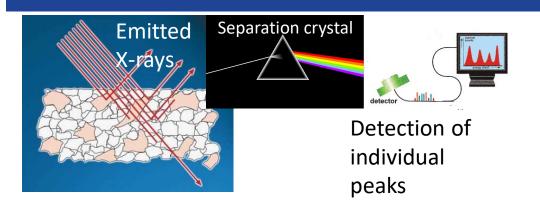




How XRF Instruments Work

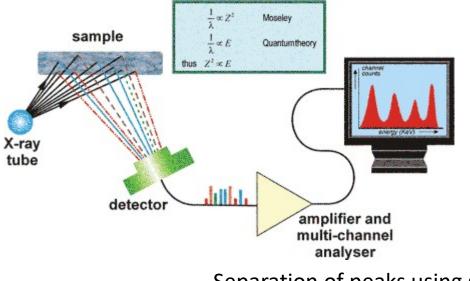
X-Ray tube emits radiation of a certain energy/wavelength

Emitting X-Rays are recorded by a detector and spectrum is produced



Internal calibrations are used to translate spectrum into element concentrations e.g. Ti 4,000 mg/kg

 Material interacts with sample in a certain volume, i.e. there is a finite penetration depth



Types of XRF technologies

Wavelength dispersive XRF (WDXRF)

Detection involves a crystal that physically separates the signal into individual wavelengths which are then captured by a detector

Energy dispersive XRF (EDXRF)

Detection is done first of the entire signal and then it is separated into components

Separation of peaks using software

Types of XRF Equipment

Stationary (lab)

Requires sample preparation for granular materials) (fusion with LiBO4, making a pellet) Both WDXRF and EDXRF Portable (lab or field)

No sample preparation necessary, can be deployed directly on the surface

EDXRF only

Typical Elements for Portable XRF Applications

hydrogen 1 1.0079	Mos	st po	rtable	e XRF	equi	pmer	nt cor	nes v	with l	built i	n cal	ibrati	ons f	or 24	-30 e	eleme	ents	helium 2 He 4.0026
lithium 3	beryllium 4											[boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
1 i	Be												B	Ċ	Ň	Ô	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	niagnesium 12												alummum 13	silcon 14	phosphorus 15	16	chionne 17	argon 18
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	22	vanadium 23	24	nanganese 25	26	27	28	29	30	gallium 31	germanium 32	arsenic 33	34	bromine 35	krypton 36
κ	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58,933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44			SP4.10.02755							
Rb	C.				41	44	45		45	46	47	48	49	50	51	52	53	54
	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd		⁴⁸ Cd	⁴⁹ In	Sn	Sb	Te	53	Xe
85.468	87.62		Y 88,906	Zr	Nb 92,906	Mo 95.94		Ru 101.07	Rh	Pd	Ag	Cd	In	Sn 118.71	Sb 121.76	Te	126.90	Xe 131.29
		57-70	88,906 Iutetium 71	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ĩ	Xe
85.468 caesium	87.62 barium	57-70 ★	lutetium	Zr 91,224 hafnium	Nb 92,906 tantalum	Mo 95,94 tungsten	Tc [98] rhenium	Ru 101.07 osmium	Rh 102.91 iridium	Pd 106.42 platinum	Ag 107.87 gold	Cd 112.41 mercury	In 114.82 thallium	Sn 118.71 lead	Sb 121.76 bismuth	Te 127.60 polonium	126.90 astatine	Xe 131.29 radon
85.468 caesium 55 CS 132.91	87.62 barium 56 Ba 137.33		lutetium 71 Lu 174.97	Zr 91.224 hafnium 72 Hf 178.49	Nb 92,906 tantalum 73 Ta 180,95	95.94 tungsten 74 W 183.84	[98] rhenium 75 Re 186.21	Ru 101.07 osmium 76 OS 190.23	Rh 102.91 iridium 77 Ir 192.22	Pd 106.42 platinum 78 Pt 195.08	Ag 107.87 gold 79 Au 196.97	Cd 112.41 mercury 80 Hg 200.59	In 114.82 thallium	Sn 118.71 lead 82 Pb 207.2	Sb 121.76 bismuth 83	127.60 polonium 84	126.90 astatine 85	Xe 131.29 radon 86
85.468 caesium 55 CS	87.62 barium 56 Ba		^{lutetium} 71 Lu	Zr 91.224 hafnium 72 Hf	Nb 92,906 tantalum 73 Ta	Mo 95.94 tungsten 74 W	Tc [98] rhenium 75 Re	Ru 101.07 osmium 76 OS	Rh ^{102.91} iridium 77 Ir	Pd 106.42 platinum 78 Pt	Ag 107.87 gold 79 Au	Cd 112.41 mercury 80 Hg	In 114.82 thallium	Sn 118.71 lead 82	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 PO	126.90 astatine 85 At	Xe 131.29 radon 86 Rn
85.468 caesium 55 CS 132.91 francium	87.62 barium 56 Ba 137.33 radium	*	lutetium 71 Lu 174.97 lawrencium	Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	Nb 92,906 tantalum 73 Ta 180,95 dubnium	Mo 95.94 tungsten 74 W 183.84 seaborgium	Tc [98] rhenium 75 Re 186,21 bohrium	Ru 101.07 osmium 76 OS 190.23 hassium	Rh 102.91 iridium 77 Ir 192.22 meitnerium	Pd 106.42 platinum 78 Pt 195.08 ununnilium 110	Ag 107.87 gold 79 Au 196.97 unununium	Cd 112.41 mercury 80 Hg 200.59 ununbium 112	In 114.82 thallium	Sn 118.71 lead 82 Pb 207.2 ununquadium	Sb 121.76 bismuth 83 Bi	Te 127.60 polonium 84 PO	126.90 astatine 85 At	Xe 131.29 radon 86 Rn

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

What You Do and See as XRF User

- Select a calibration
- Place the sample on the XRF window (or the XRF window on the surface)
- Push a button
- Look for the results

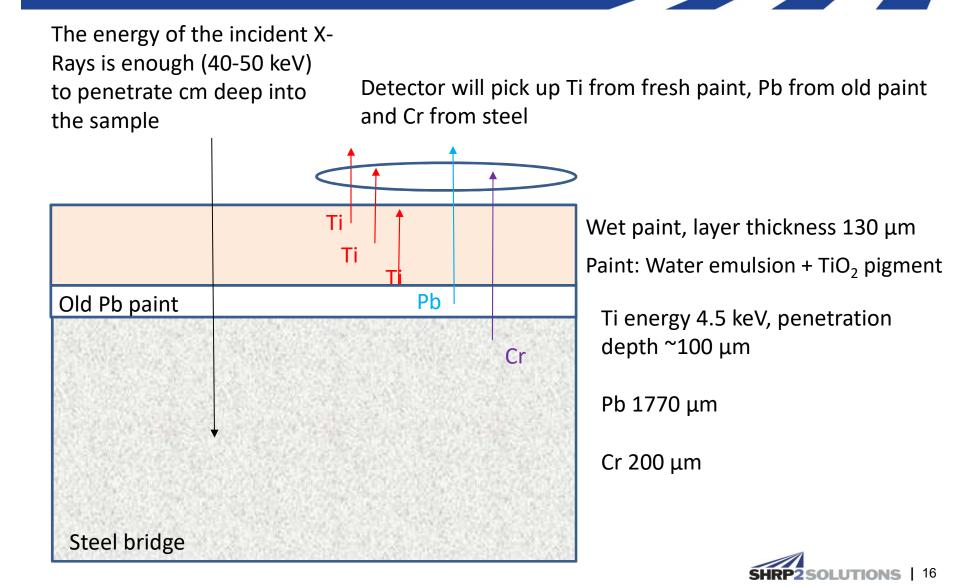
What You Do and See as Portable XRF User

Visual Output

Exported Results in Excel format (Concentration mg/Kg or wt.%)

Sample	Ni	Ni +/-	Ni Pass	Ti	Ti +/-	Ti Pass	Cr	Cr +/-	Cr Pass
XYZ -1	189	27	Pass	4784	248	Pass	18098	299	Pass
XYZ -2	<lod< td=""><td>70</td><td></td><td>6863</td><td>215</td><td>Pass</td><td>346</td><td>18</td><td>Pass</td></lod<>	70		6863	215	Pass	346	18	Pass
XYZ -3	<lod< td=""><td>56</td><td></td><td>5396</td><td>197</td><td>Pass</td><td>203</td><td>15</td><td>Pass</td></lod<>	56		5396	197	Pass	203	15	Pass
XYZ -4	85	19	Pass	4553	178	Pass	3730	65	Pass
XYZ -5	72	19	Pass	9538	231	Pass	225	14	Pass
XYZ -6	52	17	Pass	4697	146	Pass	271	13	Pass
XYZ -7	60	14	Pass	7792	170	Pass	164	10	Pass
XYZ -8	<lod< td=""><td>43</td><td>1 435</td><td>9122</td><td>199</td><td>Pass</td><td>280</td><td>13</td><td>Pass</td></lod<>	43	1 435	9122	199	Pass	280	13	Pass
			Daca						
XYZ -9	78	18	Pass	10195	225	Pass	204	12	Pass
XYZ -10	74	20	Pass	5689	180	Pass	156	13	Pass
			•						

Result Error QA/QC result



- Built-in calibrations are NOT always accurate
- The XRF will always produce a number, but the number may be misleading if internal calibration is not checked and developed for the specific matrix you are testing
- XRF is a very shallow measurement, you are testing only few microns of the material

Example – Paint Analysis

XRF Advantages and Limitations

Advantages

- Pre-calibrated for a wide range of elements
- 1-2-minute testing time
- Little or no sample prep required, depending on the material
- No maintenance required costs only associated with equipment acquisition (\$35-\$40K)
- Several applications possible (more bang for your buck)

Limitations

- Built in calibrations only work for certain material types – development of materialspecific calibration often needed
- Does not work for light elements

Derek Nener-Plante, Maine Department of Transportation

XRF applications – Maine DOT evaluation

R06B–Maine

- MaineDOT goals for R06B:
 - Maximize non-destructive testing
 - Reduce test time and cost
 - Reduce incorporation of out-ofspec material into DOT work

XRF

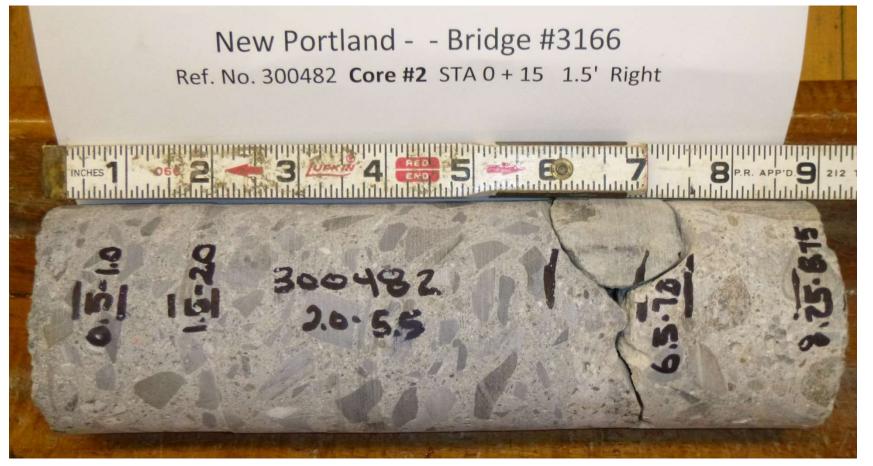
- Chlorides in bridge deck cores
- Titanium in traffic paint
- REOB in PG Binder
- SS Rebar
- Galvanized coating thickness
- Glass Beads lead, arsenic
- Presence of RAS in HMA?

R06B—Maine

- MaineDOT goals for R06B:
 - Maximize non-destructive testing
 - Reduce test time and cost
 - Reduce incorporation of out-ofspec material into DOT work

• XRF

- Chlorides in bridge deck cores
- Titanium in traffic paint
- REOB in PG Binder
- SS Rebar
- Galvanized coating thickness
- Glass Beads lead, arsenic
- Presence of RAS in HMA


Stainless steel rebar

El	%	+/- 2σ
V	0.110	0.010
Cr	23.490	0.073
Mn	1.818	0.045
Fe	70.056	0.093
Со	0.123	0.045
Ni	3.758	0.044
Cu	0.347	0.014
Zr	0.004	0.001
Nb	0.018	0.001
Мо	0.253	0.004
W	0.017	0.005
Pb	0.007	0.002

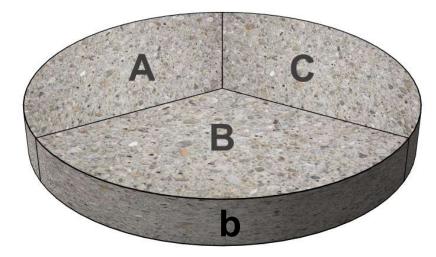
Chloride Content – Bridge Deck Cores

 Concrete cores pulverized and analyzed for chloride content ~ rebar corrosion begins at <u>1.35lb/cy or 0.03%</u>

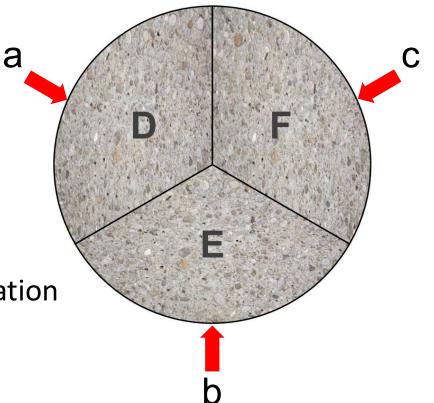
Chloride Content – Bridge Deck Cores

- Current method: AASHTO T 260 (Gran Plot Method)
 - Requires nitric acid and silver nitrate
 - Numerous steps
 - 10 tests/day
- XRF method
 - No chemicals
 - 25+ tests/day
 - Less training required

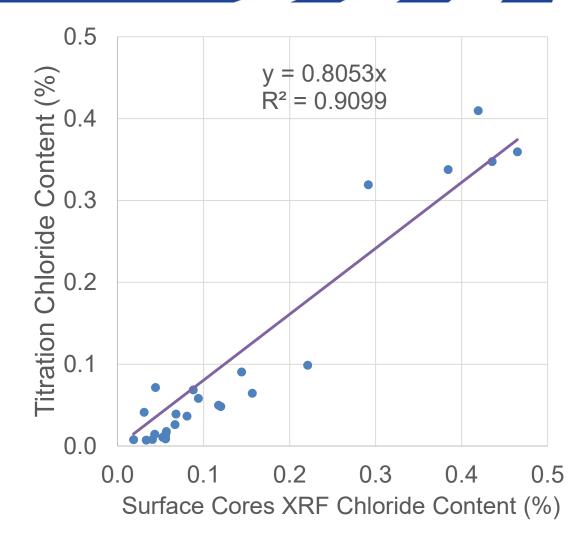
Chloride Content – Bridge Deck Cores



- Split-sample comparison on two types of samples:
 - Concrete Cores
 - Pellets from Pulverized Cores
 - Evaluated numerous binding agents for pelletized samples, XRF settings, direct measurement of concrete
 - Selected the settings that provided the best correlation on a limited amount of measurements vs. titration values
 - Expanded population of comparison


ltem	Levels	Details
Analysis Mode	3	AllGeo and Two Mining Modes
Time Breakdown	2	5/5/5/45 & 15/15/15/15
Binding Agent	6	None and 5 recommended agents
Binding %	2	5% & 10%
Replicates	3	Three measurements on each pellet

Surface Testing of Core Slices


- Top, bottom, edge of slice
- Average of all readings v. Titration

Surface Testing of Core Slices

- General trend exists but significant drawbacks
- Technician discretion to avoid exposed aggregate
- Higher variability in measurements

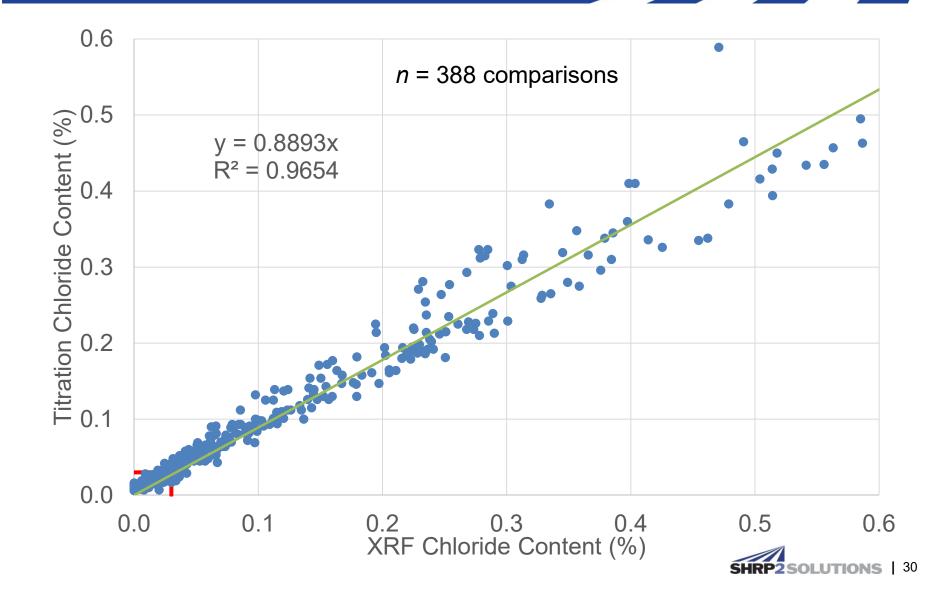
Chloride Content – Pellets from Cores

Mode/Range @ 60 Sec.	Binding Agent	% Binding Agent	R ²	Coefficient
Mining Ta/Hf 5/5/5/45	A	5	0.996445	1.091516
AllGeo 5/5/5/45	В	5	0.996009	1.142771
Mining Cu/Zn 5/5/5/45	A	5	0.995589	1.078925
AllGeo 5/5/5/45	None		0.99518	0.993099
Mining Ta/Hf 5/5/5/45	В	5	0.994987	1.145006
AllGeo 5/5/5/45	A	5	0.99459	1.084792
AllGeo 5/5/5/45	С	10	0.994295	1.082809
Mining Ta/Hf 5/5/5/45	A	10	0.994101	1.065355
Mining Cu/Zn 5/5/5/45	None		0.993977	0.985461
AllGeo 5/5/5/45	A	10	0.993585	1.061301
Mining Cu/Zn 5/5/5/45	A	10	0.993433	1.06045
AllGeo 5/5/5/45	С	5	0.993298	1.031429
Mining Ta/Hf 5/5/5/45	D	10	0.992926	1.008566
Mining Cu/Zn 15/15/15/15	A	5	0.992883	1.129886
Mining Cu/Zn 5/5/5/45	В	5	0.992812	1.144496
Mining Cu/Zn 15/15/15/15	E	5	0.992806	1.053816
Mining Cu/Zn 5/5/5/45	E	5	0.992745	1.045713
Mining Ta/Hf 5/5/5/45	None		0.992719	0.973055
Mining Cu/Zn 15/15/15/15	С	10	0.992453	1.051661
Mining Ta/Hf 5/5/5/45	С	10	0.992397	1.102904
Mining Cu/Zn 15/15/15/15	A	10	0.992358	1.034796

- Nearly all combinations showed excellent correlation
- Selected the simplest configuration with no binding agent

Pulverized & Pelletized Specimens

Pulverized & Pelletized Specimens



Split Sample Comparison

Split Sample Comparison

Chloride Content – Bridge Deck Cores

- Conclusions from study
 - Pellets of pulverized material superior to surface readings of slices
 - No binding agent required
 - In process of testing lab-prepared reference samples
 - In process of validating correlation with independent splitsample comparisons

Joe Kerstetter, Tennessee Department of Transportation

XRF applications – Tennessee DOT évaluation

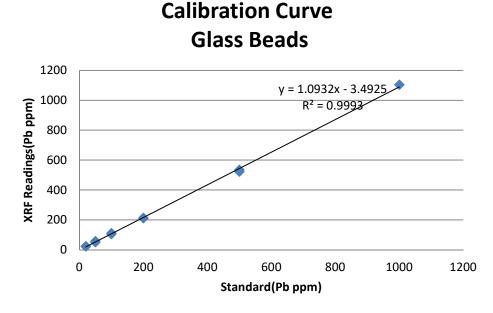
R06B—Tennessee

XRF

- Silica and Calcium Carbonate in Limestone
- Titanium in Thermoplastic
- Glass Beads lead, arsenic
- REOB & PPA in Binder?
- Galvanized coating thickness?

Heavy Metals in Glass Beads

- Current Practice:
 - Tennessee requires every lot to be tested with EPA tests 3052, 6010B, or 6010C.
- Future Method:
 - Perform XRF testing on every lot. Allow manufacturer to Certify lots to Federal Aid Standard.



Heavy Metals in Glass Beads

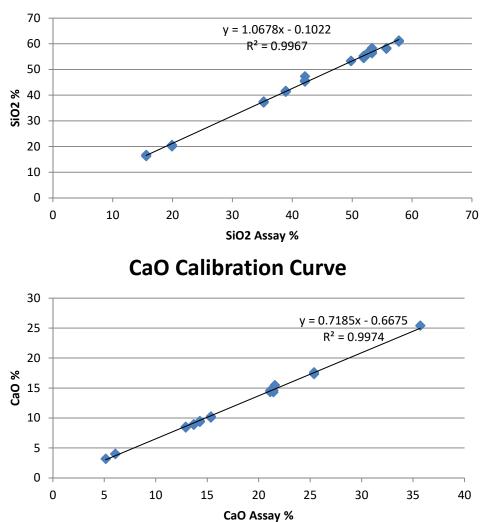
ID	Sample	Reading(ppm)	Assay(ppm)
NCS73330	W1BSNCSZPO	23	20
	W2BSNCSZPO	23	20
NCS73331	W1BSNCSZPO	57	50
	W2BSNCSZPO	51	50
NCS73332	W1BSNCSZPO	111	100
	W2BSNCSZPO	105	100
NCS73333	W1BSNCSZPO	211	200
	W2BSNCSZPO	214	200
NCS73334	W1BSNCSZPO	535	500
	W2BSNCSZPO	523	500
NCS73335	W1BSNCSZPO	1104	1000

 Used this data to create a calibration curve for each machine, but found that at the low end it was not needed. Measured the Standards and compared them to their Assays.

Heavy Metals in Glass Beads

Sample ID	Notes	Pb Concentration (ppm)	As Concentration (ppm)
17C1358P	W1BPENF1IS	10	26
	W2BPENF1IS	g	17
17C1519P	W1BPENF1IS	68	23
	W2BPENF1IS	29	27
17C1566P	W1BPENF1IS	12	10
	W2BPENF1IS	14	. 13
17C158P	W1BPENF1IS	24	. 19
	W2BPENF1IS	27	20
17C913P	W1BPENF1IS	g	7
	W2BPENF1IS	8	10
17C914P	W1BPENF1IS	35	11
	W2BPENF1IS	32	13
17C915P	W1BPENF1IS	g	5
	W2BPENF1IS	10	3

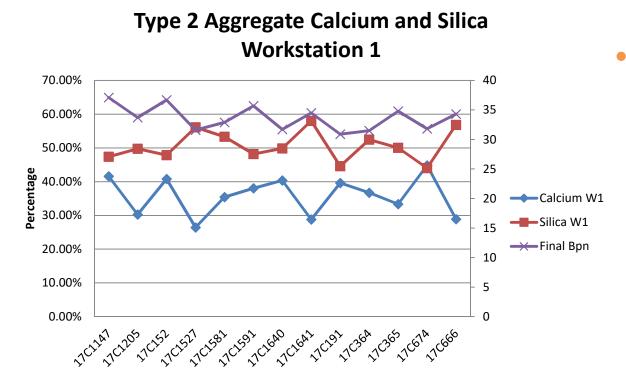
 In-Situ Testing with the handheld XRF showed good results.



- Currently tested by standard-less program on WDXRF in Lab.
- Handheld XRF can perform same testing but still requires a lot of sample prep to be accurate.

SiO2 Calibration Curve

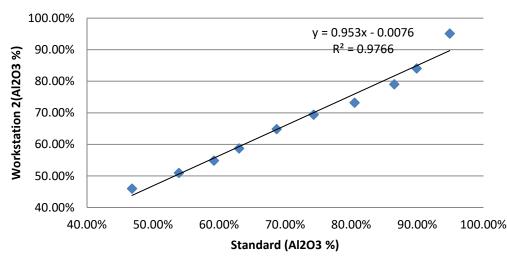
- Standards consisted of ICRM, NCS, and CCRL samples.
- Calibration Curves show very little matrix effects.



	Silica Sample Preperation Study						
Sample	Silica (IS) W1	Silica (IS) W2	Silica (PO) W1	Silica (PO) W2	Silica (PP) W1	Silica (PP) W2	
17C1147	2 9.91%	<mark>3</mark> 0.89%	<mark>3</mark> 2.75%	3 1.47%	47.37%	46.23%	
17C1205	2 8.46%	<mark>33</mark> .35%	43.36%	43.5 <mark>6</mark> %	49.76 <mark>%</mark>	49.32%	
17C152	24.40%	21.95%	30.27%	2 9.87%	47.84%	47.35%	
17C1527	<mark>39.</mark> 23%	43.6 <mark>3%</mark>	48.22%	48.18%	56.08%	56.92%	
17C1581	42.1 1%	43.2 <mark>0%</mark>	44.8 <mark>5%</mark>	<mark>43.3</mark> 1%	53.29%	53.00%	
17C1591	41.68%	41.4 6%	<mark>39.</mark> 60%	<mark>38</mark> .32%	48.17%	46.7 9%	
17C1640	20.62%	21.25%	<mark>39</mark> .13%	<mark>38</mark> .59%	49.86 <mark>%</mark>	48.80%	
17C1641	40.20%	<mark>37</mark> .19%	50.30 %	50.09 <mark>%</mark>	57.98%	56.81%	
17C191	26.31%	25.63%	36 .42%	<mark>36</mark> .45%	44.5 <mark>7%</mark>	44.4 <mark>8%</mark>	
17C364	<mark>38.</mark> 57%	37 .50%	43.8 <mark>5%</mark>	44.8 <mark>0%</mark>	52.44%	51.03%	
17C365	<mark>35</mark> .84%	<mark>37</mark> .31%	41. 31%	41. 13%	50.04 <mark>%</mark>	49.45 <mark>%</mark>	
17C674	50.44 %	50.32%	<mark>35</mark> .98%	<mark>37</mark> .47%	44.0 <mark>0%</mark>	45.5 <mark>6</mark> %	
17C666	49.94 <mark>%</mark>	<mark>48.92</mark> %	50.38 <mark>%</mark>	51.64%	56.82%	56.76%	
	9.0)%	6.2	7%	4.2	.7%	

Three
Specimen
Preparation
Techniques
were
compared.

 Pressed Pellet had the least diviation.



 The handheld XRF coupled with pressed pellet sample preparation, was able to produce suitable results.

 However the pressed pellet method would prohibit field testing.

Al2O3 in Calcined Bauxite

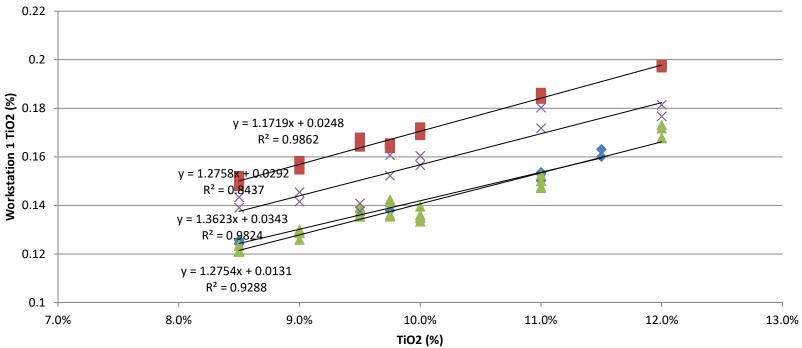
Calibration Workstation 2, Bauxite

Sample ID	Vanta	ARL-X
2016-002	75.31%	86.07%
2016-003	84.77%	85.80%
2016-008	82.94%	88.96%
2016-010	79.32%	84.65%
2016-012	79.45%	85.17%

- JRRM calcined bauxite standards were used.
- Handheld XRF used pressed pellet, and WDXRF used fused bead with Lithium Tetraborate flux.
- Significant differences suggest matrix effects may be involved.

Titanium in Thermoplastic

- Current Practice:
 - Tennessee currently accepts thermoplastic on certification.
- Future Practice:
 - The handheld can perform verification testing in the field/lab on Thermoplastic.
 - There may be some issues with some fillers in the Thermoplastic.



Titanium in Thermoplastic

Manufacturer Standards

- Standards were supplied by manufacturers and made to 7 different concentrations.
- Standards are being tested by a third party Lab to verify percentages

Future for this Product in TN

- Looking into other materials
 - Following Maine and using XRF as a rapid test for Chloride Content of Bridge Decks.
 - Using the XRF and FTIR to detect REOB's and PPA's in our Binders.
 - Will look at Sulphur content of Acid producing rock and soil, and try to minimize costly third party testing.

What's Next for R06B?

The Future

- SHPR2 R06B Peer Exchange September 26 27, 2018 Tennessee Department of Transportation Region Three Office Nashville, TN
- <u>Peer Exchange Web site:</u> <u>https://fs6.formsite.com/Mrussell/form204/index.html</u>
- Final reports from Maine, Tennessee and Alabama will be made available on the R06B product page: <u>http://shrp2.transportation.org/Pages/R06B.aspx</u>

Questions? For More Information on R06B use these contacts.

Contacts

Kate Kurgan AASHTO Product Lead kkurgan@aashto.org

Pam Hutton AASHTO SHRP2 Implementation Manager phutton@aashto.org

Steve Cooper FHWA Product Lead stephen.j.cooper@dot.gov

Maria Chrysochoou Technical Expert maria.chrysochoou@uconn.edu

Additional Resources:

GoSHRP2 Website:	fhwa.dot.gov/GoSHRP2
AASHTO SHRP2 Website:	http://shrp2.transportation.org
R06B Product Page	http://shrp2.transportation.org /Pages/R06B.aspx

Terry Arnold Subject Matter Expert terry.Arnold@dot.gov