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1. Summary of Project Goal and Objective Attainment to Date 
Inclement weather conditions such as fog, snow, ground blizzards, slush, rain, and strong winds 
negatively affect pavement condition, vehicle performance, visibility, and driver behavior. Driver 
behavior exhibits high variability, and is difficult to quantify, particularly in inclement weather 
conditions, and it is imperative to understand when describing the influence of adverse weather 
conditions on roadways. Adverse weather inhibits a driver’s ability to perceive their environment, 
and visibility reductions – caused by adverse weather events – is known to increase the likelihood 
of crashes. The effects of adverse weather on safe and efficient operation of transportation 
networks have been extensively researched; however, specific consideration of driver behavior 
and performance is noticeably absent from these studies.    
The Second Strategic Highway Research Program’s (SHRP2) Naturalistic Driving Study (NDS) 
and Roadway Information Database (RID) provide an unprecedented opportunity for researchers 
to better understand driving behavior. Having identified the potential benefits and value of this 
unprecedented dataset, the Wyoming Department of Transportation (WYDOT) partnered with the 
University of Wyoming to evaluate methods by which the data could be used to identify driver 
behavior and performance characteristics during adverse weather conditions. As part of the SHRP2 
Implementation Assistance Program (IAP), the Wyoming research team has completed the first 
phase of research, and is reporting preliminary results for the second study phase in this report. 
In the first phase, the research team focused on drivers’ behavior and performance in heavy rain 
utilizing 50 trips in rain and an additional 100 matching trips in clear weather conditions. Phase 1 
concluded that a comprehensive modeling of driver behavior using the SHRP2 data is achievable 
and will lead to better understanding of driver behavior in adverse weather conditions. In Phase 2, 
an additional 3,313 NDS trips were extracted (not including additional crash and near-crash data 
sets) from the SHRP2 states of Indiana, North Carolina, New York, Pennsylvania, Florida, and 
Washington in different weather conditions including snow, rain, and fog.  
The primary objective of the second phase is to model drivers responses to various adverse weather 
and road conditions (e.g., speed adaptation, lane maintenance, and car following), specifically 
addressing the defined research questions:  
1. Can trips occurring in inclement weather be identified efficiently and effectively using NDS 

and RID data?  
2. Can driver behavior (i.e., speed selection, car following, and lane wandering) during 

inclement weather conditions be characterized efficiently from the NDS data?  
3. What are the best surrogate measures for weather-related crashes that can be identified using 

the NDS data?  
4. What type of analysis can be performed and conclusions be drawn from the resulting dataset?  
5. Can the NDS data be extrapolated to provide real-time weather information in the context of 

the Road Weather Connected Vehicle Applications? 
The first goal in transitioning from Phase 1 to Phase 2 was to develop innovative methods to 
identify trips occurring during adverse weather conditions. The first phase allowed the collection 
of trips in various levels of precipitation, as the data acquisition method was to collect trips where 
the drivers activated their windshield wipers. Limitations to this method include: lacking trips 
occurring in conditions where wipers are not necessary (fog, ice, slush, etc.), as well as missing 
trips where the windshield wipers activations were not recognized. Therefore, researchers not only 
expanded the NDS site coverage to include all states, but also introduced two additional data 
acquisition methods to collect significantly more trips. As a result, a better representation of 
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different adverse weather conditions is included and processing is underway to include all relevant 
trips into driver behavior models.  
Using the experiences derived from the first project phase, the next goal for the research team was 
to develop a semi-automatic data reduction tool to quickly and efficiently process the NDS trip 
data. A fully automated data reduction process of time series and video data requires advanced 
video and image processing, capable of detecting weather, roadway, and traffic conditions 
automatically. Evaluation and testing of image-processing techniques for this purpose are a priority 
for the Wyoming research team and are being investigated as part of Phase 2. In the meantime, 
Phase 2 data reduction was conducted using the semi-automated tool, where the time series and 
demographics data are automatically processed and aggregated, while observations of the driving 
environment were completed manually by the research team.  
The vital purpose of Phase 2 is to generate models representing driving behavior changes as a 
function of weather conditions and includes investigation into speed selection, lane changing, and 
car following models. Speed selection models have been fully developed with a large data sample 
(212 trips total – 88 in snow, 102 in rain, and 22 in fog) and indicate speed reductions (measured 
from the posted speed limit) in snow (17.3%), rain (6.3%), and fog (3.9%), which are within to the 
2016 Highway Capacity Manual’s (HCM) suggestions of a 5% to 64% speed reduction in snow 
and 1% to 7% speed reduction in rain and similar to other existing literature. As the data reduction 
process continues through the remainder of the second phase, the speed selection models will be 
continually updated to increase output confidence. Initial efforts modeling lateral vehicle 
movements, lane changing and lane wandering indicate heavy rain can significantly increase the 
standard deviation of lane position, which is a very widely used method for analyzing lane-keeping 
ability[1]. Data processing tools for identifying automatically identifying car following instances 
using the on-board radar units have been developed and are currently being evaluated for accuracy. 
In addition, the research team is collaborating with researchers at the FHWA Turner Fairbank 
Highway Research Center to exchange and share knowledge related to calibrating the FHWA 
Driver Model to reflect driving behavior in adverse weather conditions. 
The ultimate goal in completing the second phase is to transfer the developed models into tangible 
and effective countermeasures that will improve the safety and efficiency of roads during adverse 
weather conditions. The research team is working to translate raw vehicle kinematics, video feeds, 
roadway characteristics, and driver information into strategies which can be used to support and 
evaluate Weather Responsive Traffic Management (WRTM) alternatives. One WRTM strategy 
used in some states that experience severe adverse weather events are Variable Speed Limits 
(VSLs). VSLs are shown to improve the safety and efficiency of roadways during adverse weather 
events by slowing speeds and reducing the variation in speeds among drivers with different 
perceptions of the weather conditions or varying levels of allowable risk [2][3]. The Wyoming 
DOT was an early adopter of rural VSLs, and since implementation, have been seeking to refine 
control logic to automatically set speed limits. Existing VSL assignment algorithms were 
developed using aggregate vehicle and weather data; however, a higher level of precision in both 
understanding driver behavior and estimating roadway conditions could lead to better driver 
compliance for these systems, thereby improving the safety and efficiency benefits of VSLs.  
The developed Speed Selection model is a key example of a derived mechanism by which the 
SHRP2 database can be leveraged to improve WRTM strategies directly. The developed car 
following and lane changing models could then be incorporated with speed selection in a 
microsimulation environment. Once calibrated to the Wyoming driver population and unique 
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weather and roadway characteristics, the microsimulation model would be capable of illustrating 
impacts of adverse weather conditions, as well as provide means for examining potential benefits 
and consequences of proposed countermeasures. In addition to traditional WRTM strategies, the 
final output of the second phase is expected to provide early insights in data analysis, representative 
measures of effectiveness, and promising strategies for quantifying benefits essential for 
successful deployment of the Wyoming Connected Vehicle (CV) Pilot project.  
2. Data and Methods Used for Data Analysis 
The Phase 2 data analysis goals were to conduct systematic, efficient, and complete analyses of a 
large number of NDS trips that were collected by newly developed data acquisition strategies. The 
second phase introduced new acquisition strategies that were not used in the first phase; therefore, 
a detailed explanation of these strategies are provided. 
2.1. Data Acquisition and Preparation 
The initial acquisition of data crucial to the success of the second phase, and it presented a unique 
challenge for researchers to develop creative and unique methods for leveraging the full extent of 
the provided NDS and RID data. While vehicle’s wiper settings give an indication of precipitation 
intensity, results from the first phase indicated that wiper settings are not consistent between 
vehicles. The time series wiper setting reported by the NDS vehicle Data Acquisition System 
(DAS) indicates the position of the wiper switch, rather than wiper swipe rate; moreover, different 
drivers have different tolerances to precipitation/visibility, and splashes from neighboring vehicles 
may affect driver choice of the appropriate wiper speed. Finally, the wiper setting was not provided 
for many trips – likely due to the high percentage of older vehicles (due to higher participation of 
younger drivers) or errors in the DAS recording. To compensate for these challenges identified 
from the first phases’ data acquisition experiences, three complementary methods to effectively 
extract NDS trips of interest were developed.  
2.1.1. Approach I  
The first approach used the windshield wiper method refined as part of Phase 1, but expanded 
beyond Florida and Washington to all six NDS states. The process relies on the time series wiper 
status variable to identify trips where wipers were active at a high speed for an extended length of 
time along freeway segments; more details about this approach can be found in the Wyoming IAP 
Phase 1 report [4]. This first approach produced a total of 635 trips (506 rain, 27 snow, and 13 fog 
on freeways) occurring in adverse weather conditions, plus 1,092 matching trips in clear weather 
conditions – representing 208 drivers.  
2.1.2. Approach II 
The second approach took advantage of the crash and near crash dataset developed by VTTI. Trips 
that contained crash or near crash events in all weather conditions were requested. The second 
approach produced 37 crashes, 266 near crashes, 606 matched non safety-critical events in all 
weather conditions, and 1,176 baseline trips. Manual video verification revealed that only 16 
crashes occurred on freeways (7 in rain and 9 in clear weather), and 213 trips contained near-crash 
events (33 in rain or sleet, and 182 in clear weather).  
2.1.3. Approach III  
The third approach leveraged external databases (e.g., historical weather and traffic) in efforts to 
identify NDS trips that overlap with particular adverse weather events. Two methodologies were 
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developed using the weather data extracted from the National Climate Data Center (NCDC) and 
weather-related crashes from the RID. These data sources allowed researchers to enact a type of 
perimeter around the sensor or crash location and search for trips that occurred during the same 
time period. The NCDC archives weather data from various weather stations nationwide, including 
radar, satellites, airport weather stations, and military weather stations. Among these data sources, 
the airport weather stations proved to be the most beneficial to identifying adverse weather events. 
Over 5 GB of weather data from more than 250 weather stations in the NDS states (between 2010 
and 2013) were collected from the National Oceanic and Atmospheric Administration (NOAA) - 
National Climatic Data Center (NCDC) website.  
Airports’ automated weather stations monitor weather conditions continuously and record the 
weather parameters according to predefined changes in their values; for that reason, the data do 
not follow a specific time pattern, but report weather conditions relative to real time weather 
changes. The weather parameters collected include: visibility, temperature, humidity, wind speed 
and direction, and precipitation. Among these parameters, visibility is considered one of the most 
critical factors affecting driver behavior. Visibility can generally be described as the maximum 
distance that an object can be clearly perceived against the background sky; visibility impairment 
can be a result of both natural (e.g., fog, mist, haze, snow, rain, windblown dust, etc.) and human 
induced activities (transportation, agricultural activities, fuel combustion, etc.). The automated 
weather stations cannot directly measure the visibility, but rather calculate it from a measurement 
of light extinction, which includes the scattering and absorption of light by particles and gases.   
Previous studies concluded that airport weather stations provided spatial-temporal weather 
conditions for adjacent roadways within five nautical miles and within a two hour time period at 
60% to 80% accuracy [5]. In this study, daily weather data were acquired and NDS trips were 
requested based on the daily weather information to identify all trips impacted by adverse weather 
events (such as those conducted on ice or slush road surfaces), not only those occurring during 
active precipitation or fog. Therefore, the date and time for every weather event was superimposed 
on the NDS trips for freeways within 5 nautical miles.  
Figure 1-a shows weather stations used to identify the snow-related trips in Washington and Figure 
1-b shows the five nautical mile coverage area used in the NDS trip data acquisition process. In 
total, 24 GIS-shape files were provided representing rain, snow, fog, and wind conditions for the 
six NDS states and provided to VTTI to extract NDS trips. Using this approach, the research team 
received 9,847 weather-related trips and 19,732 matched trips in clear weather conditions. The 
identified NDS trips involved 1,523 drivers between 16 and 99 years of age with the majority of 
the drivers in young age group, 16 to 29 years old. Gender representation was balanced in most 
age groups, with the exception of a slight overrepresentation of female drivers between 20 and 24 
years old. The total duration of adverse weather trips plus two matched trips in clear condition 
represents over 11,205 hours of driving.  
Extensive manual video observation and preliminary processing was conducted to screen the 
received NDS trips and filter trips occurring in clear weather or dry surface conditions. This 
preliminary screening process was required because of the wide projection of an adverse weather 
event on an entire day, but allowed for collection of trips that would not have been otherwise 
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identified. Of the received 9,847 trips, 2,682 freeway trips were verified to have adverse weather 
or roadway surface conditions. 

 
1-a 

 
1-b 

Figure 1 (a) Weather Stations Considered in Washington State (b) Five nautical miles buffer and coverage 
area of freeways for one weather station in Washington State 

The same concept was utilized for identifying neighboring weather-related trips from reported 
weather related crashes. Each weather-related crash was essentially considered as a weather 
station; a buffer representing five nautical miles influence area was used to provide spatial-
temporal segments of freeways as potential locations for trips occurring in adverse weather 
conditions. At the time of this early progress report, results from Approach III-NCDC are 
available; however, requests for trips in the temporal and spatial domain of weather-related crashes 
are still in progress. 
2.2. Data Reduction and Analysis Procedures 
The extent of required data processing to ascertain actual roadway conditions and derive 
meaningful driver behavior statistics is an extremely time consuming process. At the end of Phase 
1, researchers expected that inclusion of new methodologies for data acquisition would produce a 
significant larger quantity of NDS trips, and in order to efficiently process these data, a semi-
automatic process for reducing the time series and video data would be needed for Phase 2 (the 
process is shown in Figure 2). The developed semi-automated data reduction process reduces the 
dimensionality of the data by extracting time series variables identified in the first phase as being 
pertinent for evaluation of driving behavior in inclement weather. Analyses in Phase 1 revealed 
high variability in weather conditions within a single trip; therefore, each trip was divided into 
one-minute segments to create homogeneous segments with similar environmental and traffic 
conditions. This process of splitting trips into segments is a new analysis protocol introduced in 
the second phase to expand the capability of the research team to evaluate a significant number of 
trips, drivers, and conditions in the most efficient and effective manner possible. Observation 
templates of each trip are automatically created by the data reduction tool, identifying each one-
minute segment within the trip, its’ corresponding timestamps, and leaves data fields for video 
reviewers to report observed environmental and traffic conditions for the segment. The process of 
data reduction is considered semi-automatic because the Wyoming team created an analytic tool 
that automatically reduces the NDS time series data into statistics, plots, and observation 
templates; however, manual observation of videos to determine traffic and environmental 
conditions is still required. 
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Figure 2 Conceptual Overview of Phase 2 Data Acquisition and Preparation 

To eliminate subjectivity and any potential bias in identifying weather, traffic, or roadway 
conditions, comprehensive training and a detailed description of each condition was provided to 
hired students before the manual observation began. The video reviewers then leverage the benefits 
of the University of Wyoming’s NDS Visualization and Reduction Tool (developed in Phase 1) to 
review the video and time series data for each trip. The team is currently exploring possible 
machine learning and image processing techniques to determine if a mechanism for reliably 
determining these environmental and traffic conditions automatically is possible. Major 
hindrances to this effort include the quality of the NDS video and the variation in quality and 
physical location of the camera/ camera angle between equipped vehicles, please see Section 2.2 
for more details. 
Once the manual video observation is complete and conditions (i.e., weather, visibility, surface 
condition, freeway segment type, and traffic density) are reported for a group of trips, summary 
files describing statistical averages, standard deviations, coefficient of variations, ranges of time 
series variables (including wind shield wipers, speed, acceleration, braking, yaw rate, headway, 
etc.), and driver demographics for each one-minute segment were generated automatically. These 
summary files then serve as the foundation of modeling and representing driver behavior in any 
weather/traffic condition or by any driver demographic of interest.  
As the research team reports their intermediary results for Phase 2, a total of 212 trips in adverse 
weather conditions identified in approach 1 and 3, including: 22 trips in fog; 102 trips in rain; and 
88 trips in snow – plus 424 matching clear weather trips – have been fully processed using the 
described semi-automatic data reduction procedure. The selected NDS trips involved 145 drivers 
between 16 and 89 years of age with the majority of the drivers in the young age group (16 to 29 
years old). Gender was mainly balanced among age groups, except for a slight overrepresentation 
of female drivers between 20 and 24, which follows the same distribution that is reported by VTTI 
for all SHRP2 NDS trips.  
As mentioned in Section 2.1, preliminary filtering techniques were required for reducing the 
quantity of trips acquired through the third acquisition approach (levering weather stations and 
weather related crashes to identify potentially impacted trips). In addition, only trips occurring on 
freeways were considered. To date, a total of 14,923 one-minute segments – equivalent to nearly 
249 hours of driving time and 18,453 km (Rain: 3582 km, Snow: 1615 km, and Fog: 954 km) plus 
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their matching trips in clear weather conditions – have been processed. Once non-freeway 
segments were removed, 10,606 one-minute segments were included in preliminary driver 
behavior models (explained in Section 3). The speed limit data provided in the RID was used to 
merge speed limits with each one-minute segment. Additional work in the second phase will link 
additional roadway characteristics (such as geometry) from the RID for additional analyses.  
2.3. Visualization and Reduction Tool 
Improvements to the Wyoming Visualization and Reduction Tool, initially developed in Phase 1, 
are currently underway to extend the capabilities to detecting environment conditions from the 
NDS video feed. The visibility estimation algorithm applies methods that look for object 
boundaries and edges as a way to assess the existence of objects and their clarity in the image. This 
technique assumes that an image of an adverse weather conditions is, generally, more blurry than 
that of a clearer weather. The algorithm calculates the Laplacian filter of the image and estimates 
the visibility level based on its magnitude. The algorithm is heuristic; therefore, accurate results 
for all input images are not guaranteed. The accuracy of the visibility estimation algorithm depends 
on numerous factors including: the training data set, the filter magnitude interpreted, cutoff limits 
used for different weather conditions, and the input image quality. The visibility index (VI) is the 
resulting value given to an image to describe its visibility level. The VI is expressed as a percentage 
and classified in one of three levels: low, medium, or high. Current work is in progress to improve 
the methods for deriving the VI values, as well as to produce representative ranges of VI values 
for each classification (i.e., low, medium, high). As the visibility estimation algorithm is still under 
development and refinement, only experimental accuracies can be defined. Preliminary testing of 
the algorithm using 19 video files suggests a 79% accuracy (14 trips yielding results consistent 
with human observation; 2 trips yielding partially consistent results, and 3 trips yielding 
inconsistent results). 
3. Findings to Date 
As mentioned in Section 1, the goal of the second phase is to produce models describing various 
driver behaviors in adverse weather conditions. At this point in the analysis process, researchers 
have begun modeling using three targeted adverse weather conditions (snow, rain, and fog) and 
two traffic states (free flow traffic and mixed traffic). In addition, surrogate safety measures 
detailing crash and near-crash events have been started at this point in phase 2. The speed selection 
models have produced highly promising results to be directly included in the Wyoming VSL 
assignment algorithms. Additional behavior modeling are promising for implementation into 
microsimulation models for evaluation countermeasure effectiveness that will be used in the 
Wyoming CV Pilot. The section concludes with the next steps for completing the second project 
phase.  
3.1. Driver Behavior (Speed, Acceleration, Lane Keeping) 
Figure 3 shows the distribution of average speed in snow, rain, fog, and the matched clear weather 
in free-flow conditions. Average speed in snow, rain, and fog was found to be 18.35 km/hr (snow), 
6.17 km/hr (rain), and 4.25 km/hr (fog), lower than the speed in clear condition, indicating that 
drivers exhibit greater speed reduction in snow conditions than in rain and fog. The 
acceleration/deceleration variable was examined, and ± 0.3g acceleration/deceleration rates were 
set as a threshold to identify aggressive braking/acceleration events. However, all 
acceleration/deceleration were found to be within the [-0.3g, +0.3g] range, resulting in the 
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recognition of zero aggressive braking events. Preliminary analysis in Table 1 showed that no 
significant variability in average acceleration were recognized between rain and fog, compared to 
their respective matched clear-weather trips; however, the average acceleration in snow conditions 
was found to be higher than matched trips in clear conditions. The average deceleration was lower 
in rain and fog compared to their matching clear trips, but no significant difference was found in 
snow conditions. Deceleration variability was found to be higher in rain and fog, compared to their 
matching clear trips; yet, no significant difference was found for snow conditions. 

 

Figure 3 Observed and Fitted Distributions for Speeds during Adverse and Clear Weather under Free-Flow Traffic 

3.2. Lateral Vehicle Movements (Lane Change and Lane Wandering) 
The reported lane offset variable, provided as part of the time series trip data, is estimated based 
on machine vision. Lane offset can be considered an indication of intended (lane change) or 
unintended deviation from the lane. Phase 1 and 2 of this analysis has considered potential 
techniques for modelling lane change behavior using time series variables, such as: turn signal, 
steering wheel angle, yaw rate, and lane offset. Investigating drivers’ lane changing habits is an 
integral part of understanding driver behavior in adverse weather. Separating intended lateral 
movements (lane changes) from unintentional lateral movements (lane wandering or swerving) is 
also imperative to this analysis. 
Thus far, research efforts have focused on separating intentional and unintentional lateral 
movements using lane offset thresholds of ±0.3 meters to indicate lane wandering and ± 0.3 meters 
to ± 9.5 meters in a single direction to indicate a full lane change. Phase 2 analysis indicates that 
the average lane offset is higher in snow and fog conditions, compared to their matching clear 
trips. However, the average lane offset is lower in rain conditions than matching clear trips. The 
frequency of lane wandering instances was found to be higher in adverse conditions (snow, rain, 
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Table 1 Descriptive Statistics for NDS instrumented Vehicles in Snow & Free Flow Traffic  

 

Speed % Speed 
Reduction

Speed % Speed 
Reduction

Speed % Speed 
Reduction

Speed % Speed 
Reduction

Speed % Speed 
Reduction

Speed % Speed 
Reduction

Average 87.723 -10.118 106.068 8.523 91.727 1.074 97.9 6.931 104.049 8.906 108.295 8.201
SD 21.762 20.32 12.961 13.323 11.31 12.856 11.929 12.329 13.499 26.562 13.559 15.859

Min. 22.772 -74.268 28.072 -88.64 51.092 -49.458 32.161 -63.658 44.818 -44.291 40.857 -44.308
Max. 130.43 43.246 134.762 78.02 119.284 76.741 125.7 54.018 130.887 173.12 132.673 150.997

Median 89.054 -7.752 106.655 8.977 92.046 0.742 98.75 7.185 106.595 5.22 111.402 8.563
t-test
F-test
Z-test

Acc. Dec. Acc. Dec. Acc. Dec. Acc. Dec. Acc. Dec. Acc. Dec.
Average 0.017 -0.015 0.016 -0.015 0.021 -0.014 0.022 -0.021 0.02 -0.026 0.021 -0.022

SD 0.015 0.014 0.014 0.013 0.019 0.015 0.02 0.019 0.017 0.02 0.018 0.018
Min. 0 -0.08 0 -0.078 0 -0.072 0 -0.105 0 -0.07 0 -0.096
Max. 0.076 0 0.081 0 0.121 0 0.093 0 0.074 0 0.079 0

Median 0.012 -0.011 0.012 -0.011 0.015 -0.009 0.016 -0.015 0.014 -0.02 0.016 -0.019

Z - test
Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Average 0.271 -0.362 0.321 -0.41 0.412 -1.602 0.417 -0.462 0.346 -0.463 0.34 -0.386

SD 0.335 0.335 0.443 0.427 0.344 2.318 0.445 0.431 0.457 0.348 0.311 0.336
Min. 0 -2.761 0 -3.965 0.004 -7.631 0.002 -2.578 0.005 -1.969 0.001 -2.183
Max. 3.681 -0.001 4.74 -0.001 1.651 -0.001 3.773 -0.001 3.2 -0.003 1.482 0

Median 0.183 -0.261 0.203 -0.287 0.299 -0.485 0.267 -0.322 0.226 -0.403 0.246 -0.297

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg.

Average 32.996 -36.096 20.74 -30.568 15.46 -15.913 19.644 -16.119 19.162 -27.956 14.695 -22.447
SD 41.074 47.163 29.717 42.838 10.416 22.169 18.234 19.412 17.053 42.499 14.108 25.582

Min. 0.001 -333.65 0.095 -383.706 0.095 -224.66 0.076 -266.98 0.078 -323.856 0.073 -345.241
Max. 377.895 -0.004 155.516 -0.071 51.171 -0.308 121.291 -0.049 76.985 -0.192 68.494 -0.225

Median 19.222 -18.269 12.022 -18.876 14.321 -10.538 15.985 -9.343 15.42 -17.086 10.275 -17.222

No sig. difference between the proportion of speeding ≥ 10 km/h               
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fog), while lane change frequency was found to be higher in clear conditions. The video 
observations indicated that in adverse conditions drivers chose to reduce their speed behind a 
slower vehicle more frequently than they would have in clear conditions, contributing to the 
reduction in lane change maneuvers.   

3.3. Speed Selection 
Table 2 indicates that speed reduction is more likely to occur in adverse weather (snow, rain, fog) 
conditions in comparison with the matched trips in clear weather conditions. The odds ratios of 
driving below the speed limit, were 7, 2.7, and 2 times more likely to be in snow, rain, and fog, 
respectively, than their matching trips in clear weather conditions. 

Table 2. Odds Ratios for Speed Behavior in Snow, Rain, and Fog 

 
Driving below 
Speed Limit 

Driving above 
Speed Limit 

Odds 
Ratio 

Confidence 
Interval 

Significance 
level 

Snow 773 441 6.93 5.89 to 8.14 P < 0.0001 
Matched Clear of Snow 386 1525    

Rain 220 251 2.67 2.13 to 3.35 P < 0.0001 
Matched Clear of Rain 268 816    

Fog 91 191 2.1 1.53 to 2.89 P < 0.0001 
Matched Clear of Fog 119 531    

 
Additional analyses were conducted to compare speed reduction in each NDS state during free 
flow speed conditions. Findings indicate that the speed reduction was not similar in each state. For 
instance, in New York one-minute segments in snow had a speed reduction of about 18% being 
the highest among all NDS states. Important sample size considerations note that 74% of the 
identified snow segments were from New York. Whereas in Pennsylvania with only 7% of snow-
related segments, the speed reduction was about 9% being the lowest. In addition, in rainy weather 
conditions, trips in Indiana had the highest speed reduction of about 33%. Among the considered 
segments in rain, 1% was travelled in Indiana while Washington had 44% with the lowest speed 
reduction of about 3%. In fog, the highest speed reduction was 6% in Florida with 37% of fog-
related trips and the lowest speed reduction was in Washington with 14% of fog-related segments, 
where the NDS drivers reduced their speed by nearly 2%. These differences are certainly a function 
of the distribution and sample size of snow, rain, and fog events in each state; nonetheless, the 
finding indicates that driving behavior in adverse weather conditions must be calibrated based on 
local driver populations and their familiarity with the weather condition. 
Direct comparisons between clear weather in free flow speed and driving in adverse weather/ 
traffic conditions are imperative to identify critical traffic and environmental conditions. GIS was 
used to illustrate driver speed behavior under various weather conditions. Figures 4-6 illustrate a 
significant speed reduction due to whiteout condition on a traversed route in New York, using data 
from a sample trip and a matching trip. The average speed during the whiteout condition was about 
35 kph (22 mph) less than the matched trip in clear weather conditions. Figure 5 represents the 
driver performance on roadways considering the risk of crashes. Two heat-maps representing 
crash-prone zones using the three years of crashes (2011-2013) on I-190 and I-290 were developed.
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Figure 4 Illustration of a Trip in Fog and Whiteout Condition (I-290 New York) 

Speed reduction percentages along the travelled routes are shown in a range of colors from green 
(low crash rate) to red (high crash rate). In addition, a separate color scale along the interstate route 
represents the speed reduction (compared to the posted speed limit) realized for the trip in whiteout 
conditions and the matching clear. These maps indicate speed reduction was much greater in 
whiteout conditions compared to the matched clear weather conditions. The potential benefit of 
visualizing continuous driver performance data (here speed reduction percentage) and crash-prone 
locations heat-map is in VSL/VMS application. This information can be utilized in updating 
VSL/VMS in real-time. More clearly, using this representing GIS maps can highlight not only the 
crash hotspots but also the possible driver role in crash occurrence. This work will be expanded 
using more NDS drivers in different weather conditions. In addition, the same concept could be 
implemented on Phase 3 I-80 VSL corridor.  

 
Figure 5 Speed behavior-GIS Representation 

Direct comparisons between clear weather in free flow speed and driving in adverse weather/ 
traffic conditions are imperative to identify critical traffic and environmental conditions. GIS was 
used to illustrate driver speed behavior under various weather conditions. Figures 4-6 illustrate a 
significant speed reduction due to whiteout condition on a traversed route in New York, using data 
from a sample trip and a matching trip. The average speed during the whiteout condition was about 
35 kph (22 mph) less than the matched trip in clear weather conditions. Figure 6 shows the drivers’ 
speed and lane keeping behavior in both the clear and whiteout conditions, indicating lower travel 
speeds and difficulty  in maintaining his/her lane in whiteout condition.  
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Figure 6 Time-Series Speed and Lane keeping Performance in Clear and Whiteout- Snowy Surface Condition 

3.3.2. Modeling Speed Selection  
Factors affecting driver speed selection can be identified using both parametric and nonparametric 
models. Each modeling technique has its own advantages and disadvantages. A parametric ordered 
logistic regression model could provide the relationship between a response variable and 
predictors. One of the advantages of parametric models is the feasibility of interpreting the risk 
factors’ marginal effects [6] [7]. However, literature showed that nonparametric models have 
better accuracy than parametric models. Risk factors can also exhibit various exposure effects in 
different circumstances in parametric models (hidden effects problem). These shortcomings cannot 
be addressed using common parametric models such as logistic and probit models [8][9]. One of 
the major solutions to address the hidden effects problem is to split the full sample data into several 
sub-datasets. This method might be an effective way to see the effects of risk factors’ hidden 
exposure in different situations. In comparison, non-parametric models such as classification and 
regression tree models (CART), artificial neural networks, stochastic gradient boosting, and 
genetic algorithm (GA) are becoming more popular in transportation safety analysis [10] [11] [12] 
[13] [8]. Machine learning techniques are advantageous because of their superior classification 
performance and minimal data preparation requirements, and their promising application in real-
time risk assessment [8].  
In this study, both a parametric ordered logit model  and a nonparametric classification tree  were 
used to analyze the contributing factors affecting driver speed selection in different weather 
conditions. The dependent variable in the model is the Percent Speed Reduction (PSR), and the 
explanatory variables are the environmental, traffic, roadway, and driver characteristics. 
3.3.2.1. Ordered Logit Model 
The ordered logit model was calibrated using all available data at the time of the preliminary report; 
representing a dataset of 10,606 one-minute segments of drivers’ speed selections occurring in 
various weather and traffic conditions (matching is not required). The model was developed for 
four speed intervals based on the median of the Percent Speed Reduction  above or below the speed 
limit ((𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
). The four-quantile intervals were defined as: 1) more than 14% Speed 

reduction percentage, 2) Speed reduction percentage between 0 to 14%, 3) 0-10% increase in 
speed, and 4) more than 10% increase in speed. These intervals were used to achieve a sufficient 
sample size in each category of speed reduction. The remaining variables are exploratory variables, 
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consisting of information extracted from questionnaires including driver demographics (age, 
marital status, gender, education) and driver experience, roadway factors, and observed 
environmental and traffic conditions.   
To confirm the suitability and fitness of the model, the Log Likelihood Ratio (LR) was used. Table 
3 shows the results of the model. The Multi-collinearity was assessed by calculating the Variance 
Inflation Factor (VIF) for each predictor, which indicates how much the variance of an estimated 
regression coefficient increases if the predictors are correlated. A VIF between 5 and 10 shows 
high correlation between predictors and VIF greater than 10 indicates that the regression 
coefficients are poorly estimated due to multi-collinearity [14]. The explanatory variables 
introduced to the model produced VIF values between 1.03 and 1.40, excluding any concerning 
multi-collinearity. Only statistically significant variables were retained in the final models. 
Table 3 Estimation of Ordered Logit Model for Speed Selection in Different Weather Conditions 

Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 
Standard Wald 

Pr > ChiSq Odds 
Ratio 

Confidence 
Interval Error Chi-Square 

Intercept 4 1 -2.57 0.09 800.41 <.0001 - - - 
Intercept 3 1 -1.3 0.09 218.23 <.0001 - - - 
Intercept 2 1 0.32 0.09 13.93 0.0002 - - - 
Weather 
Cond. Rain 1 0.44 0.09 25.35 <.0001 1.55 1.31 1.83 

Weather 
Cond. Snow 1 2.23 0.06 1612.52 <.0001 9.29 8.33 10.36 

Weather 
Cond. Fog 1  0.26 0.09 7.61 0.0058 1.29 1.08 1.55 

Visibility Affected 1 0.56 0.09 35.24 <.0001 1.75 1.45 2.1 
Traffic Cond. C-F 1 1.28 0.04 995.02 <.0001 3.6 3.32 3.89 

Gender Female 1 0.09 0.04 5 0.0254 1.09 1.01 1.18 
Age >40 1 0.2 0.05 18.24 <.0001 1.23 1.12 1.35 

Marital Status Divorced 1 0.81 0.09 86.57 <.0001 2.25 1.9 2.67 
Marital Status Widow(er) 1 1.2 0.11 121.33 <.0001 3.31 2.68 4.1 
Marital Status Unmrid-partnrs 1 -0.94 0.1 88.74 <.0001 0.39 0.32 0.48 
Marital Status Married 1 0.34 0.05 45.09 <.0001 1.4 1.27 1.55 
Mileage Last 

Year 10,000 to 20,000 1 -0.5 0.05 122.3 <.0001 0.61 0.56 0.66 

Mileage Last 
Year >20,000 1 -0.58 0.06 92.33 <.0001 0.56 0.5 0.63 

Adverse weather conditions – snow, rain, and fog – were found to have a significant effect on 
speed selection. Results showed that the odds of a driver reducing their speed were 9.29, 1.55, and 
1.29 times higher for drivers travelling in rain, snow, and fog conditions, respectively, in 
comparison with drivers who were driving in clear weather conditions. Findings related to 
visibility indicated that the odds of a driver reducing their speed were 1.75 times greater for drivers 
who were driving in affected visibility conditions versus those driving in good visibility 
conditions. As expected, traffic conditions indicated a significant negative effect in speed 
selection. More clearly, the odds of having more speed reduction percentage were 3.6 times greater 
for drivers who were driving in higher traffic density compared to free flow speed (level of service 
A and B). Considering drivers’ gender, findings indicated that the odds of a female driver reducing 
her speeds greater than male drivers was 1.09.  
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3.3.2.2. Classification Tree Model 
Classification can be defined as a procedure for predicting the class of an object – considering the 
object’s features [15]. Classification models are built from a training dataset in which trends of 
predictor and target variables are identified and used to predict the value of the target variable for 
a new datasets [16]. The two main components of decision trees are the “root node” and the “leaf 
node”. The “root node” is the node located at the top of the tree, which contains all ingested data 
and the “leaf node” refers to the termination node, which has the lowest impurity.  
The root node is divided into two child nodes, based on the independent variable (splitter) that 
creates the best homogeneity. This procedure of partitioning the target variable recursively is 
repeated until all the data in each node reach their highest homogeneity. At that point, tree growth 
stops, and the node(s) that do not have any branches are the resulting “leaf node(s)”. Each path 
from the top of the tree (root node) to the bottom/termination of the tree (leaf node) can be 
considered a rule. Following this sequence, the data in each child node is purer (more homogenous) 
than the data in the upper parent node [17].  
In order to identify possible splits among all variables, a splitting criterion is generated. The 
splitting criterion is the main design component of a decision tree [18]. In a decision tree learning 
algorithm, the splitting criterion’s role is to measure the quality of each possible split among all 
variables. Two common tests used to generate splitting criteria are: 1) chi-square and 2) Gini 
reduction. In this study, Gini splitting criterion is used to select which variable and split pattern is 
to be used to best split the node.  Gini impurity indicates the data purity; specifically, it shows the 
probability of incorrect classification for a randomly chosen record from the specific node in the 
subset. Figure 7 shows the decision tree diagram for the drivers’ speed selection in different 
weather conditions based on the training data described in the previous section. In the node boxes, 
the node number and the percentage of data in each category are provided.  
One beneficial characteristic of a decision tree, compared to other modeling methods, is that it 
gives decision makers rules to address ‘‘if-then’’ questions efficiently. The dataset introduced to 
this model included 10,606 one-minute segments with time series vehicle data, weather conditions, 
driver demographics, and roadway characteristics data. The dataset contains four categories of 
drivers’ speed selection behavior as mentioned before. Of the 10,606 one-minute segments, 60% 
were considered for training dataset, 20% were considered for validation, and the remaining 20% 
were used to test the model. 
The misclassification rate, based on the training and validation datasets, indicated that the best tree 
could be obtained with 15 terminal nodes. More clearly, with 15 terminal nodes, the 
misclassification rate for the model reaches a minimum value of 0.42 and remains fairly steady. 
Node 3, on the right side, shows the data related to driving in snowy conditions. On the right branch 
of the tree, there are four terminal nodes (nodes 7, 13, 24, and 25). In three of these terminal nodes, 
the drivers were predicted to reduce their speed more than 14% (Class Label 1), which implies 
that, if a driver is travelling in snowy conditions, he/she will more likely reduce their speed, 
regardless of any other variables. 
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Figure 7 Classification tree diagram for Speed Selection Model 

As a function of traffic conditions, node 3 is split into node 6 and terminal node 7; terminal node 
7 shows that when a driver travels in any level of traffic congestions (not a free flow speed) during 
snow covered road surface conditions, there is an 86% probability that the driver will reduces their 
speed more than 14%. Node 6 is further split into node 12 and terminal node 13 based on visibility 
conditions. Node 13 shows that drivers are 56% likely to reduce their speed more than 14% in 
snowy surface conditions, free flow traffic, and reduced visibility.  Node 12 is split into node 24 
and 25, based on driver mileage last year. Lastly, node 24 shows that if a driver, drove less than 
20,000 miles last year, they were 59% more likely to reduce their speed more than 14%. 
3.4. Analysis of Safety-Critical Events in Adverse Weather 
With the influx of second-by-second kinematic vehicle data in a connected vehicle (CV) 
environment, identification of the deviation from normal driving (i.e., safety-critical events) will 
be feasible. These data will be beneficial in a wide range of safety applications. Among these 
applications, real-time hotspot network screening and emergency response are promising to reduce 
fatalities and injuries. Moreover, the USDOT CV Initiative proposed using vehicles to 
communicate roadway and weather conditions in real time. The National Highway Traffic Safety 
Administration (NHTSA) has recently mandated vehicular on-board equipment; vehicles sold or 
imported in the U.S. must come equipped with Dedicated Short Range Communication devices by 
2018.   
Phase 2 identified 16 crashes, 213 near-crashes, and 1176 baseline trips on freeways in the 6 NDS 
states. The objective of acquiring these data was to examine suitable Surrogate Measures of Safety 
(SMoS). The analysis focused on distinguishing between (SMoS) in reduced visibility compared 
to clear weather conditions. Driver behavior of the ego-vehicle (i.e., the NDS vehicle) and the 
leading vehicle were analyzed. Manual observations of the forward-facing video and time series 
data, as well as modeled trajectories of the ego- and following vehicles provided useful insights 
into safety-critical events. SMoS considered in this phase were Time-to-Collison (TTC), 
Perception Reaction Time (PRT), headway, longitudinal acceleration, lateral acceleration, and yaw 
rate. Preliminary analysis indicated a great variation in these measures. TTC was found to range 
between 1.2 to 5.2 seconds for speeds ranged between 30 to 105 kph without a clear trend. 
However, acceleration and yaw rate showed distinct patterns.  
In addition, the project team is seeking insights into the identification of inclement weather 
conditions using kinematic vehicle data. The average of decelerations for near-crashes in light and 
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heavy rain was found to be significantly less than their clear weather counterparts. Based on the 
preliminary results from manual video observations, visualization of trajectories, and descriptive 
statistics, next steps involve the development of a regression model to determine threshold values 
for safety-critical event indicators, specifically for events occurring during adverse weather 
conditions. Moreover, a logistic regression model will be calibrated to identify safety-critical 
events based on SMoS, roadway, environmental and traffic conditions. 
3.5. Next Steps for Phase 2 
The research team recognizes the importance of understanding all forms of driver behavior, 
including speed selection, car following, lane changing, and safety critical/ evasive maneuver 
behaviors. For that reason, in addition to increasing confidence in the current models, the 
Wyoming research team is coordinating research efforts with the Federal Highway Administration 
(FHWA) to determine the capability of using SHRP2 NDS data to calibrate existing car following 
models. FHWA’s Driver Model Software is a platform that was originally developed as a psycho 
physical car following model representing work zones [19]. As part of the ongoing development 
of the FHWA Driver Model Software, FHWA collaborated with Wyoming to attain access to 
Wyoming’s NDS dataset. FHWA plans to use these data as a case study to evaluate the usability 
of the NDS trips to calibrate and validate their Driver Model Software to represent driving behavior 
in adverse weather conditions and share these information with Wyoming. Coordination in data 
cleansing and manual video observation have been shared between both research groups. 
In addition to working with FHWA, the Wyoming research team is investigating other mechanisms 
of calibrating and validating common car following models, such as Wiedemann models, used in 
PTV VISSIM. Preliminary efforts to automatically capture car following instances using the NDS 
datasets have been developed and are under investigation to ensure that adequate detection 
reliability can be realized, without manual detection of car following instances. By the conclusion 
of Phase 2, potential calibration procedures will be developed and initial calibration efforts will be 
presented.  
This early research findings report indicates that an understanding of driver behavior is achievable 
using the developed methods and extracted NDS data. Next steps for completing the second phase 
include using the all received data for snow and fog and increase the sample size of trip segments 
representing rain conditions. Not only will a greater sample size be evaluated, but additional time 
series and demographic data (including responses to physical, psychological, and cognitive 
surveys completed by most SHRP2 NDS participants) will be modeled and evaluated by the 
completion of the second phase. Factor analysis methods will be used specifically to address 
relevant survey questionnaire responses. Additional data mining techniques, including 
Multivariate Adaptive Regression Splines (MARS) will be used to better understand driver 
behavior in different environmental and traffic conditions. Advantages of using MARS include the 
capacity to intake continuous response variables, promising predictive power, and overcoming the 
black-box limitations. Once Phase 2 is completed, it is expected that the reliability of these 
preliminary results will be updated by a robust sample size and additional available data fields.    
4. Comparison of Phase 2 Findings with Existing Literature  
Many studies analyzed the impact of adverse weather conditions on freeway traffic speed at the 
macroscopic and microscopic levels. Studies that have examined the impacts of adverse weather 
on traffic operations at the microscopic level are rare compared to their macroscopic counterparts. 
For the microscopic level, very limited sample size was used in previous studies including either 
probe vehicles, EZ-Pass equipped vehicles, or GPS/ Bluetooth tracked vehicles. These studies 
were conducted on very limited routes and using few subjects. Table 4 shows the comparison 
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between the results from this study and other literature illustrating of speed selection in different 
adverse weather conditions. 
As mentioned, Phase 2 recognize speed reductions of 17.3% in snow, 6.3% in rain, and 3.9% in 
fog, which is close to the speed reduction mentioned in various literature. For instance, FHWA 
reported 55% to 40%, 3% to 13% and 3% to 16% reduction due to snow, light rain, and heavy rain 
respectively[20]. The study of Agrawal et al. (2006) concluded 3%-5%, 7%-9%, 8%-10% and 
11%-15% free flow speed reduction for trace, light, moderate and heavy snow respectively[21]. In 
addition, they concluded that during the trace (none), light rain and heavy rain, the free flow speed 
reduced by 1%-2%, 2%-4%, and 4%-7% respectively. In another study, Rakha et al. (2012) found 
snow and rain can reduce free flow speed up to 19% and 9%, respectively [22].  

Table 2 NDS Speed Reductions in Adverse Weather VS. Literature 

SHRP2 NDS Literature 
 Weather 

Conditions Speed Reduction  Speed Reduction Reference 

Snow 18.35 kph 
17.30% 

5% - 64% for heavy snow Highway Capacity Manual 2000, 2010, and 
2016 [23] 

11% - 15% for heavy snow Agarwal et al. [21] 
5% - 19% Rakha et al.[22] 

13% Jr et al[24] 
16.4 kph Kyte, et al.[25] 

Rain 6.17 kph 
6.30% 

1% - 7% Highway Capacity Manual 2000, 2010, and 
2016[23] 

2% - 9% Rakha et al.[22] 
2% - 17% FHWA[26][20] 
5% - 6.5% Smith et al.[27] 

2kph - 5kph Ibrahim and Hall[28] 

Fog 4.25 kph 
3.90% 

8kph -10 kph Hogema and van der Horst[29] 
8kph Liang et al.[30] 

 

5. Plans for Phase 3  
5.1. Implications of Findings for Countermeasure Implementation  
According to the Federal Highway Administration (FHWA), Active Traffic Management, 
Variable Speed Limits (VSL), and Advanced Traveler Information Systems (ATIS) are considered 
the next steps in tackling U.S. freeway congestion and safety problems. VSL systems have been 
widely implemented in the U.S. and Europe to help mitigate recurrent congestion, adverse weather 
impacts on freeways, traffic injuries and fatalities, and pollution.  
Selecting the right speed for the condition is considered one of the most important driving tasks 
on high-speed facilities.  Because the interaction between the driver and weather conditions is not 
well understood, the continuation of this research is highly likely to result in an improved 
Connected Human-in-the-Loop VSL system which is aligned with the SHRP2 Task Force’s focus 
areas. An important component of driver-weather interaction is the characterization of traffic flow 
because driving behavior and behavior variations in adverse weather conditions are not consistent 
across traffic flow conditions and congestion levels. Modeling variation in driver behavior with 
adverse weather conditions and traffic flow states is crucial to assigning effective Variable Speed 
Limits, as these algorithms must consider the impact of both weather and traffic conditions when 
suggesting the safest and most efficient speeds. Additional benefit from these developed models 
could be seen in CV applications, where the VSL system could be expanded to incorporate mobile 
vehicle data as input and to export to VSL data to in-vehicle units. The in-vehicle units could 
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provide speed advisories, regulatory speeds, or other related advisories, such as, “turn off cruise 
control” in real-time to more effectively regulate driving speed and preserve a safe flow of traffic. 
If unusual traffic patterns are detected or inclement weather events are forecasted or experienced, 
these geospatial locations could be flagged for implementation of an appropriate and timely 
mitigation strategy. 
The objective of Phase 3 is to improve the existing weather-based VSL system on the 402-mile I-
80 corridor in Wyoming by integrating Phase 2 results into the existing VSL logic utilized by 
WYDOT. Significant challenges faced by the Wyoming I-80 corridor include severe weather 
events, high crash rates, frequent road closures, and lack of alternative routes. The winter crash 
rates were found to be 3 to 5 times as high as crash rates in the summer. For example in April 
2015, two major crashes occurred within days of each other.  The first was on April 16 involving 
around 50 vehicles and it occurred to the east of Laramie.  No fatalities resulted and over 20 injuries 
were reported. The second pileup crash occurred just four days later (April 20, 2015) to the west 
of Laramie involving 64 vehicles and resulting in 2 fatalities and over 20 injuries. The interstate 
was closed for 2 days because of the first crash and for approximately 32 hours for the second 
crash. Both of these crashes occurred during winter weather conditions with highly reduced 
visibility.  The first crash occurred within a VSL corridor and analysis of speeds at the time of the 
crash showed that vehicles had reduced their speed but visibility and roadway geometrics were 
such that the vehicles were not aware of the crash in front of them. The second crash has similar 
conditions but was located about one mile prior to a VSL corridor so speeds at the time of the crash 
were higher than the earlier crash, likely contributing the increased severity of the second crash.    

 
 Figure 8 Map of Wyoming I-80 Variable Speed Limit Corridors 

The integration of the research results will help in providing drivers with a more realistic VSL in 
adverse weather conditions encountered in Wyoming. Current practices in setting speed limits 
within VSL systems under different traffic and weather conditions are based on traffic simulation, 
survey questionnaires, and historical crash data. Results from this research helped in objectively 
acquiring better understanding into what drivers are actually doing during adverse weather and 
road conditions. Early results showed that NDS data are very useful in understanding driver 
behavior in light and heavy rain, snow, and fog compared to clear weather driving. This human 
factors integration within the VSL system will help achieving the Vision Zero goal of no fatalities 
or serious injuries. To the knowledge of the principle investigators, there are no VSL systems that 
considered driver behavior in their algorithms. 
Moreover, Phase 2 early results are very promising to support CV Pilot Deployment in Wyoming 
conducted on the same I-80 VSL corridor. One aspect of CV technology is to collect data from 
vehicles in real-time. Once an adverse weather condition is detected on a particular roadway 
segment, these data could be communicated to Wyoming traffic management center (TMC) and 
useful information could be disseminated to drivers in real-time to mitigate the increased risk. 
While Road Weather Information Systems’ (RWIS) stations are needed to support VSL systems, 
CVs could be used to collect weather information in real-time and to reduce the cost of deploying 
more RWIS, as well as to potential reduce the ongoing maintenance costs associated with existing 
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RWIS sensors. CV weather information could provide better weather data than RWIS for the 
following reasons; 1) RWIS sensors are usually mounted at higher vertical distances above the 
roadway for communication and maintenance reasons, while CV data reflect the road-level 
conditions experienced by drivers, and 2) continuous weather information collected from CV 
reflect actual vehicle performance along the length of the roadway as opposed to the spot 
observations of RWIS.  
As mentioned earlier, NDS data has several advantages over existing non-naturalistic data. Driver 
behavior information prior to crashes or near-crashes, and during various circumstances were 
extracted from the NDS data. Aggregate traffic and weather parameters (e.g., average speed, 
headways, and global weather information) were used in previous studies. These studies utilized 
traffic and weather data collected from inductive Loop Detectors (iLD), Automatic Vehicle 
Identification (AVI) systems, and Roadway Weather Information Systems (RWIS) to separate 
'crash prone' conditions from 'normal' conditions. Although the approach is novel, the aggregation 
level of traffic and weather information might have limitations. In this study, we have the 
opportunity to look into continuous speed profiles collected from the vehicle itself, trajectories of 
speeds, accelerations, and decelerations of the following and leading vehicles, and driver 
performance and behavior related to different types of crashes and near-crashes in various weather 
conditions.  

5.2. Management Approach and Risk Mitigation  
Phase 2 early results attained to date are very promising for a more effective Variable Speed Limit 
System. However, transferability of the SHRP2 NDS results will be examined. While many studies 
including this study concluded that adverse weather conditions have a tremendous impacts on 
traffic operations, all studies reported that these results are site-specific and speed and car-
following behaviors may be different at other locations based on varying driver experience and 
roadway characteristics. In most of the studies in the literature, driver characteristics are missing. 
The SHRP2 NDS data provided comprehensive insights into driver characteristics. This will 
enable better transferability to other sites if driver population is known. While the SHRP2 NDS 
data can account for most of the confounding factors such as roadway and driver characteristics, 
the transferability of the results to I-80 corridor will be inspected. Wyoming DOT is collecting 
comprehensive traffic and weather data as part of the CV Pilot deployment, these data may be used 
to examine the applicability of Phase 2 results. Speed data from CV Pilot in Wyoming will be used 
to adjust factors identified in Phase 2.  
Task 1. Collect Wyoming VSL Baseline Data: Collect baseline data on current WYDOT TMC’s 
VSL operations including traffic speed and volume, weather, and VSL sign data to quantify 
measures of system performance, such as traffic flow speed deviations, vehicle headways and 
speed compliance during different weather event categories.  
Task 2. Add Connected Vehicle Speeds to VSL Algorithm: Add Connected Vehicle data to the 
existing software developed to monitor real-time individual speed and speed deviations from the 
existing roadside speed radar sensors. Update microscopic traffic and driver parameters associated 
with speed selection in microsimulation models for Wyoming based on driver behavior models 
calibrated in Phase 2. The inclusion of connected vehicle data would allow for insight into the road 
conditions between RWIS sites so that the speeds reflect the entire speed segment and not just the 
conditions at a spot location near the RWIS site.  The Phase 2 models provide insight into 
translating driver behavior into road conditions. 
Task 3. TMC VSL Protocol Comparison: Compare Current TMC VSL Protocol Comparison 
with the Automatic Logic developed by UW in previous research, which utilized a self-learning 
regression tree analytic model. Currently WYDOT TMC operators apply components of the 
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developed control logic manually.  Full deployment of the control logic would set targets for 
speed compliance and speed deviations and would learn from each storm event based on success 
of each storm event speed strategy. 
Task 4. Integrate SHRP2 NDS Study Results: Update the VSL logic using results from the 
NDS Phase 2 study. Identify and model Deviation from Normal Driving. Calibrate models to 
identify Critical-Safety Events based on I-80 roadway characteristics. Account for variation 
between NDS and CV data in identifying Safety-Critical Events. Different techniques could be 
used to identify CSE including modeling drivers’ acceleration preferences (no need for radar 
data), modeling changes in velocity and headway between an ego-vehicle and its leader (radar 
data or Basic Safety Message from CV technology are needed), and modeling deviation of 
vehicle dynamics and roadway geometry. 
Task 5. Update VSL Logic: Add VSL logic to the real-time speed software to develop 
recommendations for both VSL Speeds and non-VSL Advisory Speeds. The current VSL logic 
only applies to the ~ 145 miles of VSL-controlled roadway in the four VSL corridors.  These VSL 
corridors have VSL signs spaced on average between 5 and 7 miles and have speed radar 
and RWIS equipment installed at each VSL sign location. For the proposed system, the CV data 
would be used to supplement the sensors in the non-VSL corridors in order to recommend non-
regulatory speed advisories in the ~255 miles of non-VLS segments.  The non-VSL corridors have 
far greater spacing between speed radar and RWIS installations.  
Task 6. VSL System Testing and Evaluation: Run the system in the TMC environment spring 
and summer of 2018 to test and debug. The performance of the updated VSL system will be 
examined and compared to the baseline system. 
Task 7. IRIS Integration: Integrate the system into the TMC’s IRIS software for winter of 
2018-2019. 
It is envisioned that total time required for Phase 3 including the submission of the final 
report would be 28 months, starting August 2017-Decmber 2019. This lines up perfectly 
with the deployment of the CV Pilot. Detailed timeline for milestones is provided in 
Table 1 in the Appendix.
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APPENDIX 
TIMELINE TABLE 
Table 1: Work Plan Schedule 

Month 

Research Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

2017 2018 2019 

A S O N D J F M A M J J A S O N D J F M A M J J 

Task 1 
Collect Baseline VSL Data 

Task 2 
Add CV Speeds to VSL 

Task 3 

TMC VSL Comparison

Task 4 

SHRP2 NDS Integration 

Task 5 

Update VSL Logic 

Task 6 

VSL System Testing 

Task 7 

IRIS Integration 

Documentation and 
Deliverables Schedule 

        Quarterly Reports       Final Report Preparation Final Report /Presentation to FHWA 
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