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EXECUTIVE SUMMARY 

The topic of regulatory speed limits continues to be an important transportation policy issue. 
Speed limits are generally determined in consideration of roadway characteristics, traffic 
volumes, and environmental conditions. Prior research has shown that traffic crashes and 
fatalities generally tend to increase with higher speed limits. However, on higher speed facilities, 
the design speed is often significantly higher than the posted limit, creating the potential for 
significant non-compliance by motorists. This explains, in part, why at least 14 states have 
increased speed limits on rural freeways between 2012 and 2018.  

While the research literature suggests increases in both mean speed and speed variance have 
adverse impacts on safety, distinguishing the nature of these relationships is challenging. This is 
due to various factors, including imprecision in determining the exact time at which a crash 
occurred, as well as the specific traffic conditions immediately preceding the crash. Further, 
much of the prior research in this area has been limited to using aggregate data for specific road 
segments where detailed driver information was not available.  As such, it is difficult to infer 
how the behaviors of individual drivers may vary in response to different speed limits, as well as 
how these behavioral changes may impact crash risk. 

The data from the second Strategic Highway Research Program (SHRP 2) Naturalistic Driving 
Study (NDS) allows for more extensive investigation of the behavior of individual drivers, which 
addresses several of the analytical concerns noted above. The SHRP 2 NDS allows for an 
investigation of how drivers adapt their behavior in response to the speed limit and other changes 
in roadway geometry, traffic conditions, and environmental characteristics. These data also allow 
for close investigation of driver behavior preceding the occurrence of crash and near-crash 
events. To this end, this study aims to improve our understanding of fundamental aspects of 
speed selection behavior. 

Time-series data from the SHRP 2 NDS were leveraged to examine how drivers adapt their 
speeds: 1) under constant speed limits; 2) across speed limit transition areas; and 3) along 
horizontal curves. These speed data were subsequently used to investigate the speed-safety 
relationship by examining crash/near-crash risk on both freeways and two-lane highways. The 
research also examined driver distraction, including the circumstances under which distraction 
was most prevalent, as well as the effects of distraction on crash risk. Lastly, driver behaviors 
were examined leading up to crash and near-crash events to assess how reaction times and 
deceleration rates varied among drivers involved in these safety-critical events. 

Higher speed limits were found to result in higher travel speeds, though the increases in travel 
speeds tended to be less pronounced at higher posted limits. In addition to responding to changes 
in speed limits, drivers were found to adapt their speeds based upon changes in the roadway 
environment, such as the introduction of horizontal curves, as well as in response to traffic 
congestion, adverse weather, and work zone environments. 
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On freeways, speeds tended to be more variable at lower posted limits, particularly at 55 and 60 
mph. Likewise, speed fluctuations were generally higher at lower speed limits on two-lane 
highways, as well. Speed standard deviation was increased under traffic congestion, along 
horizontal curves, and in presence of on-street parking which all probably relates back to 
changes in roadway environment, and especially are indicative of more urban areas.  

In transition areas, where speed limit increases and decreases occurred on both freeways and 
two-lane highways, the results suggest that speed changes are very gradual in the areas 
immediately upstream and downstream of where the posted limit changes. The differences 
between mean speeds upstream of the new regulatory speed limit were found to be much lower 
compared to segments with similar constant speed limits, which is indicative of drivers changing 
their behavior significantly upstream of the new speed limit introduction. More pronounced 
changes were observed where limit reductions were introduced, though these decreases in mean 
speeds were still relatively small in consideration of the magnitude of the change in limits. 

Drivers were also found to adapt their speeds on horizontal curves, particularly on sharper (i.e., 
smaller radius) curves. These speed reductions were greater in magnitude when advisory speed 
signs were present. Further, the reductions were also larger in magnitude when the differences 
between the posted limit and the advisory speed were larger, as well. However, the reductions 
were found to be markedly smaller than (approximately half of) the recommended advisory 
speed. Further analysis revealed that drivers tend to start accelerating back to baseline speed 
while within the curve when smaller differences between the posted speed limit and the advisory 
speed was present. 

In addition to examining driver speed selection behavior, a series of logistic regression models 
were estimated to identify how speed metrics and various other factors influence crash risk. The 
results showed that increases in the variability of speeds among individual drivers over time and 
space during 20-s event intervals led to increases in the risk of crash- or near-crash events. This 
variability in speeds may be reflective of several factors, such as traffic congestion or differences 
in individual driving behaviors, which collectively contribute to an increased risk of rear-end or 
side-swipe collisions. 

This study also provides important insights into driver distraction, as well as the influence of 
distractions on crash/near-crash risk. Driver distraction tended to be less prevalent under adverse 
weather conditions, as well as among certain subsets of the driving population while distractions 
were more likely under clear weather conditions and higher levels of service. 

Risk analyses were conducted to determine which factors were likely to increase or decrease the 
likelihood of a crash or near-crash event. Females and risk-averse drivers were less likely to be 
involved in crash/near-crash events. Crashes were more likely on roadways with greater numbers 
of lanes, as well as among drivers who engaged in other high-risk behaviors. 

Lastly, the study provides important insights into driver behavior leading up to crash and near-
crash events. The investigations focused on understanding how reaction time, deceleration rate, 
and speed selection varied with respect to traffic conditions, roadway geometry, driver 
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characteristics, and behavioral factors. Driver response and braking behaviors were examined 
under unexpected situations where braking was required. 

The results show that reaction time varied based upon the type of crash/near-crash event, the 
gender of driver, and whether the driver was distracted over the course of the driving event. 
Particularly, the drivers were slow to respond to the braking of leading vehicles. The reaction 
time was longer for distracted drivers and males. Other factors such as the age of the driver, 
weather conditions, and the road surface showed no correlation with the reaction time. Drivers 
also tended to brake at different rates depending upon the driving context. The rate of braking 
was affected by the initial speed, the grade of the roadway, and the type of scenario that required 
the braking to occur.  

Ultimately, the substantial breadth and depth of data elements available through the NDS for 
crash, near-crash, and baseline driving events provide a unique opportunity to identify salient 
factors impacting traffic safety at the level of individual drivers. The findings from this study are 
largely supportive of the extant research literature and identified several important considerations 
for transportation agencies in considering policies, programs, and countermeasures to address 
speed-related concerns, distracted driving, and various design issues. 

. 
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1. INTRODUCTION 

Maximum regulatory speed limits are determined in consideration of roadway characteristics, 
traffic volumes, and environmental conditions to notify drivers of the highest speed one can 
travel under most conditions. Since the introduction of maximum speed limits, there has been 
significant debate as to how speed limits are most appropriately determined for specific 
locations. Research studies have generally shown that increasing speed limits result in more 
crashes, with particular increases in the number of fatal crashes. However, road users generally 
favor higher posted speed limits due to the resulting increases in travel speeds and associated 
reductions in travel time.  

Therefore, the influence of speed limits, traffic characteristics, and roadway geometry on driver 
speed selection, as well as the interrelationship between speed and crash risk, continue to be 
critical areas of interest for transportation agencies across the United States. A recent 
longitudinal study found states with 70-mph and 75-mph maximum speed limits on rural 
interstates tended to experience 31 percent and 54 percent more fatalities, respectively, as 
compared to states with 60-65 mph maximum limits (Davis et al. 2015). Figure 1 shows fatality 
rates have generally decreased across rural interstates within each of these groups since 1999, but 
there remains a persistently higher rate among those states with higher limits.  

FIGURE 1  Fatality Rates by Maximum Speed Limit (Davis et al., 2015). 

These findings reinforce the results of numerous prior studies that showed lower speed limits to 
result in safety benefits (Forester et al., 1984; Fowles and Loeb, 1989; Levy and Asch, 1989; 
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Zlatoper, 1991; Dart, 1977; Weckesser et al., 1977; Deen and Godwin, 1985; Burritt et al., 1976; 
Greenstone, 2002; Ledolter and Chan, 1996; Baum et al., 1989; Bham et al., 1992; McKnight 
and Klein, 1990; Wagenaar et al., 1990; Gallaher et al., 1989; Upchurch, 1989; Farmer et al., 
1999; Patterson et al., 2002; Haselton et al., 2002). While less research has been conducted on 
high-speed undivided highways, recent research has shown higher speeds are also associated 
with increased safety risks on these roads, as well (Hamzeie et al., 2017a).  

Despite these findings, at least 14 states have increased speed limits on rural freeways since early 
2012. The current maximum limits for rural freeways are summarized in Figure 2 for all states. 
Over this same time period, four states have increased speed limits on undivided rural highways 
while additional states have considered, or are considering, increases on various road types. In 
contrast to earlier speed limit increases, which were often implemented on a system-wide basis, 
the recent changes have been implemented selectively in consideration of segment-specific 
factors such as the existing mean and 85th percentile speeds, speed variance, and recent crash 
history.  

While the research literature generally suggests differences in mean speed and speed variance 
both impact safety performance (Solomon, 1964; Cirillo, 1968; West and Dunn, 1971; Garber 
and Ehrhart, 2000), distinguishing the nature of these relationships is challenging. This is due to 
various factors, including imprecision in determining the exact time at which a crash occurred, as 
well as the specific traffic conditions immediately preceding the crash. Further, much of the prior 
research in this area has been limited to using aggregate data for specific road segments where 
detailed driver information was not available.  As such, it is difficult to infer how the behaviors 
of individual drivers may vary in response to different speed limits, as well as how these 
behavioral changes may impact crash risk. 

The second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS) 
allows for more extensive investigation of the behavior of individual drivers, which addresses 
several of the analytical concerns noted above. The SHRP 2 NDS involved the collection of 
detailed data at 10 Hz intervals from more than 3,400 drivers, allowing for an investigation of 
how drivers adapt their behavior in response to the speed limit and other changes in roadway 
geometry, traffic conditions, and environmental characteristics. These data also allow for close 
investigation of driver behavior preceding the occurrence of crash and near-crash events. To 
date, the majority of research studies in this area have relied predominantly on police crash 
reports or post-crash surveys. Failing to properly account for precipitating events and driver 
behaviors that led to the incident may inhibit proper identification of contributing factors.  

This study aims to address this gap and to improve our understanding of fundamental aspects of 
speed selection behavior using naturalistic driving data. The research also involves an 
investigation of driver distraction, as well as how speed selection, driver distraction, and other 
factors influence the likelihood of a driver being involved in a crash or near-crash event. 
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FIGURE 2  Maximum Speed Limits on Limited Access Freeways, April 2017. 

1.1 Research Objectives 

In order to better understand the differences in driver behavior that may result from speed limit 
policies, this study involves a detailed assessment of the behavior of individual drivers using the 
SHRP 2 Safety Data. The SHRP2 Safety Data includes very detailed information on individual 
driver behavior from the NDS, as well similarly detailed information regarding the driving 
environment from the related Roadway Information Database (RID). Collectively, these data 
allow for an unparalleled assessment of how driver speed selection changes in response to the 
speed limit while controlling for important roadway, environmental, and driver characteristics. 



4 

The goal of this study, conducted as a part of the SHRP2 Implementation Assistance Program, is 
to leverage the information from the NDS and RID to examine the interrelationships between 
driver, vehicle, and roadway factors with driver speed selection and crash risk. A variety of 
research questions are addressed as part of this study: 

 How is driver speed selection affected by roadway geometry (e.g., horizontal and vertical 
curvature) and traffic characteristics (e.g., congestion)? 

 How do drivers respond to visual cues, such as curve advisory signs, and over what 
dimensions (both temporal and spatial) do these effects occur? 

 What are the impacts of in-vehicle distraction on driver behavior and under what 
circumstances is distraction a particular concern? 

 What are the impacts of driver behavior, roadway geometry, traffic conditions, and 
environmental factors on crash risk?  

To address these questions, six primary analyses were conducted using various subsets of the 
NDS data. Chapter 2 presents a brief overview of the research literature related to speed and 
safety. Chapter 3 provides a high-level summary of the NDS, the RID, and other data sources 
that were utilized as a part of this project. Chapter 10 provides a succinct summary of key 
results, conclusions, and directions for future research. The remaining chapters, which focus on 
six general topic areas, are briefly summarized here: 

1. Speed Selection under Constant Speed Limits (Chapter 4) – Driver speed selection is 
examined on freeways and two-lane highways where the speed limit remained constant 
over the duration of the driving event. Analyses focus on the impacts of driver, 
geometric, and environmental factors on the mean and standard deviation of travel speeds 
over the course of these events. 

2. Driver Response during Crash/Near-Crash Events (Chapter 5) – Driver behavior 
leading up to crash and near-crash events is evaluated, including an examination of 
reaction times and deceleration rates and how these parameters vary based upon driver 
and roadway-related characteristics. 

3. Speed Selection across Speed Limit Transition Areas (Chapter 6) –Separate analyses 
were conducted for freeways and two-lane highways in transition areas where the posted 
speed limits were increased or decreased. Speed profiles were examined upstream and 
downstream to discern how drivers adjust speed in response to changes in posted limits.  

4. Speed Selection along Horizontal Curves (Chapter 7) – Driver speed profiles were 
compared across horizontal curves, with particular emphasis on the effects of curve 
characteristics, as well as the presence of advisory speed signs. The locations were 
selected to cover a wide range of speed limit and advisory speed combinations.   

5. Crash Risks on Freeways and Two-Lane Highways (Chapter 8) – The likelihood of a 
crash or near-crash occurrence was evaluated in consideration of driver behavior (e.g., 
speed selection, distraction, and various roadway and environmental conditions).  

6. Prevalence and Impacts of Distracted Driving (Chapter 9) – High fidelity data related 
to in-vehicle distraction were analyzed to understand the circumstances under which 
distraction was most prevalent, as well as the characteristics of the drivers who were most 
prone to engaging in various types of distraction. 
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2.0 LITERATURE REVIEW 

2.1 Operating Speed and Speed Limit 

Speed management has long been a significant focus area in traffic safety research. The topic of 
maximum speed limits emerged as a particular issue in the United States in 1974 following the 
passage of the Emergency Highway Energy Conservation Act when the 55-mph National 
Maximum Speed Limit (NMSL) was established. This limit was introduced to reduce the 
operating speed with an aim to lower fuel consumption. While the lower speed limit was shown 
to lead to significant decreases in traffic fatalities, compliance with this maximum limit was low 
on higher speed facilities, particularly on interstates where the design speed was often greater 
than the 55-mph limit. Given this issue, the Surface Transportation and Uniform Relocation 
Assistance Act (STURAA) was introduced later in 1987 which permitted a maximum limit of 65 
mph on rural interstates in areas with populations below 50,000 people. Following implementing 
each of these speed limit policies, numerous studies examined the relationship between posted 
speed limits and the frequency and severity of traffic crashes. Ultimately, in 1995 the NMSL was 
repealed and states were given the entire authority to determine the posted speed limits in their 
jurisdictions. Since the dawn of maximum speed limit, numerous studies aimed at examining its 
impacts on travel speeds, synopses of some prominent ones are described below.   

Parker (1997) conducted an extensive evaluation study, using data from 1985 to 1992 on non-
limited access highways, to evaluate the effect of changing the posted speed limit on driver 
behavior. The maximum posted speed limit on the select roadways was 55 mph at that time. 
However, during the course of study speed limits were increased or decreased on a number of 
segments along these roadways. Subsequently, driver behavior data along with crash data were 
collected from 22 states to study any potential interrelationship. These changes in the speed limit 
included either increasing or decreasing the maximum permitted speed along the roadway 
segments. The limits were lowered by 5, 10, 15, or 20 mph or raised by 5, 10, or 15 mph. 
Surprisingly, less than 1.5 mph change in the speed was reported after the implementation of 
these changes. This study findings revealed that drivers generally tend to select their speeds on 
non-limited access highways based on the roadway geometry rather than solely the speed limit. 

A study conducted by Wilmot and Khanal (1999), leveraged the results from numerous studies 
all over the world to ascertain the impact of speed limit on travel speeds. Similar to previous 
study, they concluded that drivers do not necessarily follow the speed limit to adjust their travel 
speed, but rather choose the speed they personally perceive as safe.   

In 2002, a national survey of more than 4,000 drivers examined general attitudes regarding speed 
limit violations and other high-risk driving behavior. It was reported that most drivers believe 
they can travel approximately 6 to 8 mph over the posted limit before getting cited by law 
enforcements while respondents believed they should be able to drive as much as 10 mph above 
the limit before receiving a citation. This study also found that drivers believe the most 
influential factors when selecting their speed are weather conditions, their perception of what 
speeds can be regarded as ‘safe’, the posted speed limit, traffic volume and level of congestion, 
and how experienced they feel they are on a particular road given previous travels (Royal, 2003). 
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Kockelman et al. (2006) studied the impact of raising speed limits on operating speeds, as well as 
the associated variability in speeds on high-speed roadways. The findings demonstrated that 
increases in the operating speed were, on average, less than half of the actual amount with which 
the speed limit had been raised. The authors also noted that the average speed and the speed 
variability are more influenced by roadway geometry and cross-sectional characteristics as 
compared to posted speed limits. These findings are largely reflective of driver opinions on 
speed limits.   

A survey of freeway users found that, on average, respondents drove 11 mph over the speed limit 
on interstates posted at 55 mph, 9 mph over the speed limit on interstates posted at 65 mph, and 8 
mph over the speed limit on interstates posted at 70 mph (Mannering, 2007).  Also, male drivers 
were shown to drive at higher speeds as compared to females. Driver age was also found to be 
inversely correlated with speeding.  

Utah is one of the states that experienced speed limit increases over the past years. In November 
2010 and October 2013 speed limit was increased from 75 mph to 80 mph over approximately 
300 miles of rural interstates in Utah. In a study conducted by Hu (2017), travel speeds were 
investigated at 80 mph zones and nearby locations that experience spillover effects, as well as 
more distant segments that retained the 75 mph as control locations. Log-linear regression 
models were estimated to evaluate the impact of increased speed limit on travel speeds. The 
author reported the mean travel speed to be 4.1% and 3.5% higher across 80 mph segments and 
nearby locations, respectively. In addition, the probability of exceeding 80, 85, or 90 mph was 
examined through estimating a series of logistic regression models. The results showed that 
increasing speed limits not only is associated with higher travel speeds, but also results in greater 
probability of exceeding the new speed limit.  

In a similar study, speed data were collected and analyzed over 19 sites across rural interstate 
highways (Johnson and Murray, 2010). These locations covered a variety of speed limits, 
uniform or differential, and were all flat and straight over two miles upstream of the study site. 
The analysis of operating speeds for those vehicles with no leading vehicle revealed that drivers 
tend to exceed the posted speed limit regardless of its magnitude. Aggregated speed data showed 
a compliance rate of only 7% on roadways posted at 55 mph, whereas this measure increased to 
49% for locations posted at 75 mph.   

2.2 Operating Speed and Geometric Attributes 

The American Association of State Highway and Transportation Officials (AASHTO) notes that 
driving speeds are affected by the physical characteristics of the road, weather, other vehicles, 
and the speed limit (AASHTO, 2011). Among these, road design is a principal determinant of 
driving speeds. Geometric factors tend to have particularly pronounced impacts on crashes.  
Ultimately, many factors affect speed selection beyond just road geometry and posted limit as 
shown by prior research in this area (Emmerson, 1969; McLean, 1981; Glennon et al., 1983; 
Lamm and Choueiri, 1987; Kanellaidis et al., 1990). 
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Fitzpatrick and Collins (2000) developed regression equations to evaluate factors affecting the 
operating speed along horizontal and vertical curves, as well as tangent segments. It was 
concluded that the most effective single parameter to model the speed along horizontal curves is 
the inverse of the curve radius. Operating speeds along horizontal curves with radius greater than 
800 m were found to be very similar to that of tangent segments. However, the operating speed 
decreases significantly on horizontal curves with radius less than 250 m. 

Collectively, existing literature suggests that degree of curvature, length of curve, and deflection 
angle are salient factors to predict the operating speed along horizontal curves. Voigt et al. 
proposed an equation to estimate the 85th percentile speed along horizontal curves in which the 
degree of curvature, curve length, deflection angle, and superelevation were statistically 
significant (Voigt, 1996). 

Schurr et al. (2002) utilized the data from 40 different sites across the state of Nebraska to 
estimate the mean speed of the traffic. In addition to deflection angle and curve length, the 
posted speed limit was found to be a significant predictor for the mean speed. A one-mph 
increase in speed limit resulted in only a 0.27 mph increase in mean speeds. However, it should 
be noted these curves were generally located along high-speed roadways. In addition to the 
operating speed along horizontal curves, regression models were developed for the operating 
speed on tangent segments in advance of the curves, where a one-mph increase in posted speed 
was associated with a 0.51-mph increase in mean speeds. Ultimately, the existing research 
literature suggests that the operating speed is not also affected by the posted speed limit, but also 
by the geometric characteristics when the geometric design deviates from base conditions (e.g. 
presence of horizontal curves). 

The majority of studies that evaluated impacts of geometric attributes on travel speeds have been 
focused on curves since speeds on such segments are significantly influenced by a few known 
variables including curve radius and superelevation. A 2000 study examined travel speeds on 
tangent sections on two-lane rural highways. They grouped the study segments into four different 
categories based on the tangent length and the radii of the preceding and succeeding curves. 
They proposed numerical equations for speed estimation across each group by computing a 
geometric measure that was comprised of the tangent length, and the preceding and succeeding 
curves radii. However, they were unable to identify any association between travel speed and 
other geometric characteristics like presence of vertical curves (Polus et al., 2000).  

2.3 Operating Speed and Crash Risk 

Traffic speeds play a significant role in roadway safety. The risk of being involved in a crash, as 
well as the severity of the outcome could dramatically be affected by the speed of the moving 
vehicle (Elvik, 2005). Traveling at higher speeds results in longer stopping distance, as well as 
less maneuverability, and requires more prompt reaction to a certain incident or change in the 
roadway (Aarts and Van Schagen, 2006).  

In an early study conducted on 600 miles of rural highways, three-quarters of which were two-
lane highways, Solomon (1964) reported that for speeds less than 50 mph, the involvement rate 



8 

of vehicles in crashes (i.e. the number of vehicles involved in accidents per 100 million vehicle-
miles travel)  decreases as the speed increases. Solomon (1964) proposed that the probability of 
getting involved in a crash per vehicle-miles travel as a function of vehicle speed follows a U-
shaped curve. Later, while the Solomon’s curve was replicated in some other research studies 
(Cirillo, 1968; Munden, 1967) with some modification, criticism arose in subsequent research for 
the use of estimated pre-crash speeds of the involved vehicle, which could bias the results (White 
and Nelson, 1970). 

Baum et al. (1989) used data available through Fatal Accident Reporting System (FARS) to 
compare the fatality rates between states that imposed higher speed limits versus those that 
retained the 55-mph speed limit. The data from 38 states with increased speed limit were 
aggregated across the months with higher speed limits in 1987, as well as the same months from 
1982 to 1986. The results showed the number of fatalities on rural interstates were significantly 
higher after the enactment of STURAA as compared to data from the five prior years. 

New Mexico was the first state to utilize 65-mph speed limits after the passage of legislations in 
April 1987. As a result, a before and after analysis was conducted by Gallaher et al. (1989) to 
compare the rate of casualties along these roadways.  The results indicated that the rate of fatal 
crashes had increased by 2.9 per 100 million vehicle-miles traveled (VMT) during one year after 
period, while 1.5 per 100 million VMT increase was predicted using the same trend based on the 
data from preceding five years. 

The speed limit on rural limited access highways in state of Michigan was raised to 65-mph 
effective January 1988. As a result, a study was conducted to examine the number of fatalities 
resulting from this change (Wagenaar et al., 1990). To this end, the number and rates of crashes, 
as well as the injuries and fatalities were collected along the segments were the speed limit was 
raised, as well as those for which the limit was retained. The analyses revealed that roadways 
where the speed limit was raised were associated with 19.2 percent higher fatalities, while this 
increase jumped up to 39.8 percent for major injuries, as well as 25.4 percent for moderate 
injuries.  Also, they noticed that fatalities increased even on roadways which maintained 55-mph 
speed limit, suggesting that imposing higher speed limit may also have spillover effects on other 
roadway segments. 

One concern that arose while assessing the effect of 65-mph speed limit on crash rates was that 
these rates should not be examined solely on interstates in isolation from the rest of a network. In 
a study conducted in 1997, Lave and Elias (1994) proposed that the increase in the speed limit on 
interstates had resulted in reallocation of traffic and drivers. Consequently, they concluded that 
this reallocation in the system addresses the increased fatality rates on interstates. They also 
showed that imposing 65-mph speed limit on rural interstates resulted in a 3.4-5.1 percent 
reduction in the statewide fatality rates. 

Greenstone (2002) reexamined the findings of Lave and Elias (1994). This study utilized similar 
data over a slightly shorter period of time from 1982 to 1990. This study also found evidence as 
to a modest decline in the statewide fatality rates. Although the findings showed a significant 
increase in the fatality rates on interstates, a large reduction in the same measure of interest was 
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reported on urban non-interstates. In addition, unlike the previous study, the author found no 
evidence regarding the reallocation phenomenon on roadway networks (Greenstone, 2002).  

A similar study was designed to examine the effect of the introduction of 65-mph speed limit in 
state of Ohio (Pant et al., 1992). A before and after analysis was conducted using 36 months of 
data before and after the implementation. In contrast to prior literature, Pant et al. (1992) were 
not able to identify any significant difference in the number of fatalities between rural interstate 
highways posted at 65-mph as compared to those which retained a 55-mph posted limit. 
However, slight increases were reported with respect to the number of injury and property 
damage only (PDO) crashes on roadway stretches that had been posted at 65-mph. In addition, 
rural interstates posted at 55-mph were found to be associated with lower rates of injury and 
PDO crashes as compared to before implementation period. Consequently, no evidence was 
found as to the spillover effect which had been proposed by some other studies.  

The implementation of higher speed limits was thought to be associated with some economic 
benefits most important of which was travel time. However, the change in the number of fatal 
and injury crashes might not justify such a modification. In order to address this concern, speed 
and volume data, as well as crash data were obtained from Iowa Department of Transportation 
on four main roadway classes: 1) rural interstates; 2) rural primary roads; 3) rural secondary 
roads; and 4) urban interstates. However, the 65-mph speed limit was only imposed on rural 
interstates. This study found 38.2 percent increase in the number of fatal crashes on rural 
interstates, whereas a 15.6 percent reduction in major-injury crashes was observed on the same 
roadway segments. However, significant reduction in both fatal and major-injury crashes was 
reported on rural primary roads, rural secondary roads, and urban interstates (Ledolter and Chan, 
1996).  

Farmer et al. (1999) compared the number of fatalities across 12 states which increased the 
posted speed limit to 70-mph in 1996 with the similar data from 1990 to 1995. Rural and urban 
interstates, as well as freeways were included in this study. States with higher posted speed limit 
were associated with 12 percent increase in the number of fatalities on interstates and freeways. 
However, on other types of roadways, this increase was only three percent, while the overall 
increase on all types of roadways was 6 percent. 

Elvik (2005) conducted an extensive review of 460 studies about the speed and road safety 
associations and concluded that there is a robust relationship between them. It was also revealed 
that the effect of a 10 percent change in the mean speed of traffic on traffic fatalities is more 
pronounced as compared to a 10 percent change in traffic volume.  Subsequently, in an extensive 
review, Aarts et al. (2006) provided a thorough list of the studies that had been conducted to 
investigate the relation between crash risks and speed in general. They concluded that crash rates 
increase exponentially for individual vehicles that increase their speed and this increase is more 
pronounced in minor/urban roads as compared to major/rural highways. 

In a more recent study, Kockelman et al. (2006) investigated the safety impacts of raising speed 
limit from 55 to 65 mph and from 65 to 75 mph Total and fatal crashes were shown to increase 
by 3 and 28 percent when raising speed limit from 55 to 65 mph. In addition, they estimated less 
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pronounced increases by raising the posted limits to 75 mph. It was shown that a 10-mph 
increase from 65 mph to 75 mph would result in total and fatal crashes to go up by 0.6 and 13 
percent, respectively.   

The investigation of the effect of speed on crash risk, as well as the crash frequency was not 
limited to the United States. This high-interest area in traffic safety and operation has also been 
investigated by researchers all over the world. Aljanahi et al. (1999) developed models to 
investigate how crash rates change with regard to various roadway and traffic characteristics 
including speed. The crash rates were explored on divided highways in two sets of locations, one 
in UK and the other one in Bahrain. They proposed that substantial safety improvement could be 
achieved either by mandating lower speed limits or reducing the spread of vehicle speeds. They 
also found that in UK sites which had lower crash rates, there is a strong statistical relationship 
between crash counts and the variability of traffic speed, while the results for Bahrain, which 
was associated with higher accident rates, indicated that mean speed of the traffic is a stronger 
predictor of crash rates. 

Fildes et al. (1991) conducted a self-report study in both rural and urban highways in Australia to 
investigate the effects of speed selection and speed spread on crash rates. The study was 
performed on two urban and two rural roads with speed limits of 60 km/h and 100 km/h 
respectively. Drivers who drove at a speed below V15 or above V85 were pulled over and asked 
about their crash history during last 5 years. Fast drivers had experienced more crashes recently 
and there was an exponential relationship both for urban and rural highways with a much steeper 
curve for urban roads. In another similar study by Maycock et al. (1998), a 13.1 percent increase 
in crash liability was reported in response to a one percent increase in speed. 

In July 2003, the speed limit on 1100 km of rural roads in South Australia was reduced from 110 
km/h to 100 km/h. Using crash data from two years of before and two years of after speed limit 
reduction, Long et al. (2006) found only a 1.9 km/h reduction in the average speed of the 
vehicles and a 20 percent reduction in casualty crashes. Also, a follow up report on the same 
roadway segments analyzed ten years of before and after speed reduction data and compared the 
results with control segments where the speed limit was still 110 km/h. It was revealed that the 
control segments, which still had the same speed limit, had also experienced a long-term trend of 
crash counts reduction. A pronounced drop in casualty crashes was still apparent.  

Also, the results of a study on a number of divided segments in Naples-Candela Italy, showed 
that the absolute value of the operating speed difference in the tangent-to-curve transition is a 
significant predictor for total crash counts (Montella and Imbriani, 2015). 

In summary, while the existing research literature generally shows higher speed limits to 
introduce adverse safety impacts, there are some examples where increasing limits was shown to 
have marginal or positive impacts on safety. Naturalistic driving study data provide a unique 
opportunity to better understand how roadway geometry, traffic conditions, and various factors 
both internal and external to the vehicle affect driver behavior, speed selection, and crash risk. 
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3.0 OVERVIEW OF SHRP 2 NATURALISTIC DRIVING STUDY DATA 

The second Strategic Highway Research Program (SHRP2) was aimed at identifying solutions to 
three major transportation challenges at the national level: improving transportation safety to 
save lives; reducing congestion; and improving methods for renewing roads and bridges which 
would ultimately result in improving the quality of life. Extensive data collection has been 
conducted for the purpose of various aspects of the SHRP 2, providing a unique opportunity to 
address different research questions that were not possible to examine before. Within the context 
of traffic safety, this includes a large-scale data collection exercise across six different states, 
including Florida, Indiana, New York, North Carolina, Pennsylvania, and Washington. This 
section includes details of the background and data acquisition systems used to conduct this 
study of naturalistic driving behavior, as well as how these data sources were utilized in this 
study.  

The naturalistic driving study (NDS) that has been conducted as part of the SHRP2 is the largest 
NDS ever undertaken. Approximately 3,400 drivers from the six study sites volunteered to 
participate in this study in which their real-world driving behavior was recorded. Over the course 
of this extensive data collection, between 2010 to 2013, more than 4,300 years of naturalistic 
driving data were monitored and recorded. The drivers and study sites were selected such that 
they well represent a sample of driving behavior population, weather conditions, demographic 
distribution, and a variety of road types. Despite all the cautions taken in the first place, there 
have been studies to compare the SHRP 2 NDS sample with the national data that will be 
furtherly discussed in the following sections.  

The first initiative to recruit participants involved random cold calling which turned to have a 
very low response rate of approximately 2 percent. In addition, it was found that even a smaller 
proportion of the respondents owned vehicles eligible for the study. The other limitation 
associated with this approach was the fact that study design required oversampling among older 
and younger drivers. However, the random cold calling did not allow to target specific age 
groups. Once these issues were identified, a more efficient approach was followed in which the 
cold calling was limited only to those households who own qualified vehicles.  Also, the study 
sites were given the authority to pursue their own means of recruiting including social media, 
local newspapers, web-based Craigslist, etc. (Hankey et al., 2016). 

Ultimately, over 3,300 eligible vehicles were selected for inclusion in the study. A data 
acquisition system (DAS) was developed to keep records of all trips made during the study 
period. Consequently, four video cameras, front and rear radar, accelerometer, Global 
Positioning System (GPS), vehicle controller area network, lane-tracking system, alcohol sensor, 
incident button, and data storage system were installed on all registered vehicles. Figure 3 shows 
the schematic view of the data acquisition system used in the data collection process. The 
recorded trips were collected and maintained by Virginia Tech Transportation Institute (VTTI) 
resulting in more than two petabytes (four million gigabytes) of data.  The vehicles were 
equipped with forward view, in-cabin driver face view, instrument panel view, and rear-view 
cameras to record both the in-vehicle and out-of-vehicle environment with fine details. Figure 4 
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demonstrates the fields of view for each of the mounted cameras. Figure 5 shows where each of 
the cameras were installed, as well as the four different views that were being recorded. 

 

FIGURE 3  Data acquisition system schematic (Antin et al., 2015). 

 

FIGURE 4  Fields of View for the data acquisition system. 
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FIGURE 5  Composite snapshot of four continuous video camera views (Antin et al., 2015). 

Initially, the study design involved equal number of participants across the six study sites. 
However, the contribution of each study site to the overall study sample turned to be different. 
The largest study areas were Seattle, Washington; Tampa, Florida; and Buffalo, New York with 
each providing roughly 20% of entire data. Following to these is Durham, North Carolina that 
involved collection of approximately 15% of the data, whereas State College, Pennsylvania; and 
Bloomington, Indiana each contributed for over 5% of the entire data (Hankey et al., 2016).  

The use of the SHRP2 NDS data is critical since it deals with human subjects. This requires 
further consideration and obligation to ensure the secure use of personally identifying 
information (PII). PII is any sort of information that could potentially be used to identify human 
subjects in real world. This includes driver face video, GPS traces that might reveal the 
participant’s home, work location, etc. Therefore, all the NDS participants were promised that 
the confidentiality of this sort of data would be maintained (Hankey et al., 2016). A certificate of 
confidentiality was issued by the U.S. Department of Health and Human Services (HHS) to 
protect the participants. Prior to participation in the study, select drivers were asked to sign an 
informed consent per IRB obligation. As such, the data pertaining to only those drivers who 
signed an informed consent could be reduced for analysis purposes. Also, a secure data enclave 
(SDE) was developed to restrict data access and protect the PII accordingly. An SDE is a 
physically isolated environment where only qualified researchers could access the PII.  
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Ultimately, 85% of the collected trip data were reduced and made available for research 
purposes. The remaining 15% were excluded for various reasons, which included trips involving 
an unconsented driver or missing/unusable video data, (Hankey et al., 2016). The SHRP2 NDS 
data may be categorized into seven different groups as follows:  

1. Participant Assessments:  
 Demographic Questionnaire 
 Driving History 
 Driving Knowledge 
 Medical Conditions and Meds 
 ADHD Screening 
 Risk Perception 
 Frequency of Risky Behavior 
 Sensation Seeking Behavior 
 Sleep Habits 
 Visual, Physical, and Cognitive Test Results 
 Exit Interview 

2. Vehicle Information:  
 Make, Model, Year, Body Style 
 Vehicle’s Condition (Tires, Battery, etc.) 
 Safety and Entertainment Systems 

3. Continuous Data:  
 Face, Forward, Rear, and Instrument Panel Video  
 Vehicle Network Data 
 Accelerometers, Gyros, Forward RADAR, GPS 
 Additional Sensor Data  

4. Trip Summary Data:  
 Characterization of Trip Content 
 Start Time and Duration of Trip  
 Min, Max, Mean Sensor Data 
 Time and Distance Driven at Various Speeds, Headways 
 Vehicle Systems Usage 

5. Event Data:  
 Crash, Near-Crash, Baseline 
 30-second Events with Classification  
 Post-Crash Interviews 

6. Cellphone Records:  
 Subset of Participant Drivers 
 Call Time and Duration  
 Call Type (Call, Text, Picture, etc.) 

7. Roadway Data:  
 Matching Trip GPS to Roadway Database 
 Roadway Classifications 
 Other Roadway Data 
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In order to examine the research questions outlined previously, data were leveraged from three 
primary sources, including InSight, InDepth, and the Roadway Information Database (RID). The 
InSight and InDepth databases were developed as a part of the NDS and are maintained by the 
Virginia Tech Transportation Institute, whereas the RID is maintained by Iowa State University 
(ISU). These sources are briefly detailed here 

 InSight data includes information regarding all drivers and vehicles involved in the NDS, as 
well as details of all trips and corresponding events (e.g., crash, near-crash, and baseline) that 
occurred during the study period. Each driver-vehicle pair is unique; however, these drivers 
and vehicles may be associated with multiple trips or events. 

 InDepth contains time-series data from each trip/event, which includes GPS location 
information, speed, and acceleration for all NDS-involved vehicles. Location information is 
provided at 1-second resolution while speed and acceleration data are available at 10-Hz 
resolution. 

 The Roadway Information Database (RID) was developed to provide support information 
detailing geometric and environmental characteristics across the six NDS study states. This 
database is comprised of roadway features and cross-sectional characteristics along 25,000 
miles of roadway. 

3.1 SHRP2 InSight Data 
 
This subset of the NDS data includes the aggregated and summarized data excluding any 
personally identifying type of information which is also publicly available through the InSight 
website. The InSight data have been extracted and coded through manual review of the videos by 
VTTI trained interns and staff in the secured data enclave (SDE). These data have been directly 
captured by the DAS or were collected through surveys either before or after the study initiation.  

The integration of all the collected and reduced data provide a comprehensive set of data 
elements for each trip included in the study sample. Unique identifiers have been developed for 
each event, trip, driver, and vehicle to allow for an easy integration of the datasets. A single trip 
may be associated with more than one event, a single vehicle may have been driven by multiple 
consented drivers, and some drivers might have had multiple trips and events associated with 
them. Further details on the statistics of the data used for each research question are provided in 
related sections of the report.  

3.2 SHRP2 InDepth Data 
 
As mentioned previously, the second portion of the NDS data is referred to as InDepth. This 
subset of data includes any information which may potentially result in identifying the 
participants, including time-series and video data. This information is not available online 
(through InSight) and access to these data requires Institutional Review Board (IRB) approval, 
including the development of processes and procedures related to maintenance and security of 
the data. This project was declared exempt under IRB ID #15-050.  
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The time-series data are provided by specific key identifiers for events, trips, vehicles, and 
drivers that may be used to integrate and/or query data. However, these identifiers are designed 
and coded in a way that they cannot be used to identify the drivers, their vehicle, and/or their 
home, work or any other of their locations in real world. The VTTI privacy constraint code 
indicates that time-series data may not be provided for any traversal near the beginning and the 
end of a trip defined as a pre-determined distance from trip origin or destination. At such 
locations, GPS data contain a limited random noise to further anonymize the trip. However, the 
VTTI tries to minimize or if possible completely eliminate such traversals when providing time-
series data. In addition, any sort of face video data and unaltered forward video of a crash are 
regarded as PII and may be viewed only in the SDE located in Blacksburg, Virginia. However, 
the forward video data, used as part of this study, may be obtained and reviewed off-site 
contingent upon security and privacy standards.   

3.3 Roadway Information Database 
 
In conjunction with the NDS data, the roadway information database (RID) was developed as 
part of the SHRP2 to provide supplementary data regarding roadway geometry and traffic 
attributes. The RID is a geospatial database that provides detailed data for 25,000 miles of 
roadway across the six study states (Florida, Indiana, New York, North Carolina, Pennsylvania, 
and Washington).  The RID is comprised of road characteristics, which were collected and 
combined using existing roadway data from public and private sources, as well as supplemental 
data collected by the ISU using a mobile van shown in Figure 6.  

The RID was collected and is being maintained by the Center for Transportation Research and 
Education (CTRE) at Iowa State University. The effort was to collect and combine data at sites 
where the NDS was conducted and complement the driving data with roadway and geometry 
data to the extent possible. However, due to the limited resources and complications associated 
with the data collection process, the roadways with higher trip densities and more interesting 
features for research purposes were selected for data collection purposes through this project.  
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FIGURE 6  Mobile Van Used to Collect Data for Roadway Information Database. 

Multiple data sources were leveraged to gather a comprehensive roadway database. Existing data 
for over 200,000 miles of roadways though related departments of transportation (DOTs) and 
environmental systems research institute (ESRI) were integrated with the roadway asset 
inventory which was collected through the instrumented mobile van driving along designated 
roadway stretches. The colored links in Figure 7 shows the roadway stretches on which the 
mobile van was driven.  

 

FIGURE 7  Collected links for SHRP 2 roadway information database. 
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The primary purpose in RID development was to provide a database that could be linked directly 
to the data from the NDS. The integration of the NDS data with RID provides a great opportunity 
to expand the available data elements to be investigated, as well as to collect more detailed 
information by locating traces through google earth. The RID is comprised of several shapefiles 
for each state as follows:  

 Lighting 
 Lane 
 Median Strip 
 Shoulder 

 Rumble Strip Links 
 Intersections 
 Signs  
 Barrier 

 Location attributes 
 Alignment  
 Section 
 Crashes 

These shapefiles may be linked to one another as needed using the tools available through 
ArcMap based on the linear referencing system. Ultimately, a comprehensive database could be 
developed including required data elements across the six study sites.  

3.4 Data Acquisition 
Given the objectives of this extensive study, high resolution data were required from a wide 
range of facility types. Overall, the data utilized for this study consisted of four major categories 
of traces: (1) Under constant speed limit; (2) Across speed limit transition areas; (3) Along 
horizontal curves with speeds; and (4) Along curves without advisory speed signs as control 
sites. The first two included separate datasets for freeways and two-lane highways. However, the 
latter two were solely focused on two-lane facilities as the advisory speeds on freeways were 
limited to exit/entrance ramps and did not provide adequate samples of driving events for 
analysis purposes. Since the data integration process was similar for all four datasets, the 
following section describe how the datasets were constructed by integrating information from 
different sources. There are additional differences between the datasets design and how they 
were structured for analysis that will be described in later sections as necessary.  

3.5 Data Integration 
The research team was provided with individual comma-separated-value (i.e. csv) files for each 
of the requested traces. The first step was to combine all the individual csv files and create 
datasets to examine the research questions. To visualize the traces in ArcMap environment, and 
extract the geometric information from the RID, each timestamp in the time series data needed to 
have valid longitude and latitude information. This information was supposed to be provided at 
each one second interval; however, such information may be missing for some or, in some rare 
cases, all of the timestamps during a single trip. Consequently, only those instances with valid 
longitude and latitude information were retained in the dataset. This process resulted in losing 
parts or all of a number of trips and, as a result, subsequent analyses needed to be done by 
caution in such cases. Once the traces with valid geographic information were identified, they 
were visualized in ArcMap environment. Figure 8 displays how the obtained traces were 
scattered across states and were not necessarily within the boundaries of the six study areas 
(highlighted in aqua color). This further resulted in losing some traces as the RID only includes 
information across the prementioned six states. Subsequently, separate datasets were created for 
each state for conflation purposes as the RID is state-based.  
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The RID uses linear referencing system as its method of spatial referencing where the location of 
features is described in terms of measurements along a linear element, from a predetermined 
starting point. However, the obtained traces only included GPS outputs containing longitude and 
latitude. As a result, the first step was to convert the raw data to linear referencing system. A 
python script was developed to perform this task. After conversion, each point was assigned a 
route identifier and distance along the route that was used to extract other features from the RID.  

 

FIGURE 8  Map of the obtained traces. 

Once the time-series data were converted to the appropriate referencing system, geometric 
features were conflated (i.e. linked) to each datum using the ArcMap tool called “Overlay Route 
Events”. A dynamic segmentation process was utilized, where relevant attributes were queried 
from each shapefile based on the route identifier and the mile point. The dynamic segmentation 
process is briefly described in the following steps:  

1. The attribute table of the shapefile of interest was queried for those RouteIDs in the 
time-series data and exported as a dBase file in ArcMap. This step reduced the 
amount of underlying data to be read and analyzed by a significant amount, resulting 
in noticeable reduction in the processing time. 

2. To conflate the time-series data to the shapefile of interest, the “Overlay Route 
Events” from linear referencing tools menu in ArcToolbox was used. The time-series 
dataset needed to be selected as the “Input Event Table”. Since each row in the time-
series data corresponded to one point along the trip trace, the “Event Type” must be 
selected as “POINT”.  Subsequently, “FrMeasure” has to be selected as “Measure 
Field”. Due to the point nature of this table, the “To-Measure-Field” is disabled.  
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3. The dBase file exported in step 1 must be selected as the “Overlay Event Table”. 
Unlike the input table which was of a point type, all the tables that needed to be 
overlaid were in line format. Consequently, the “Event Type” must be selected as 
“LINE” for all these tables. In this case, both “From-Measure Filed” and “To-
Measure Field” needed to be specified which corresponded to the start and end points 
of the layer that was being overlaid. Ultimately, the output were exported and saved 
as a comma separated values (CSV) file. These steps are shown in Figure 9. 

 

 

FIGURE 9  A snapshot of the conflation process. 

This dynamic segmentation process was used to extract desired features from various RID 
shapefiles. Table 1 provides a list of shapefiles and the features extracted from the RID as part of 
this study. The information for each point along the event traces was extracted from the proper 
record with identical Route ID, and a From- and To- Measure which made up a segment 
embracing the queried point. Blank fields were displayed if no record matched these conditions.  

TABLE 1. RID Shapefiles and the Associated Extracted Information 

Shape file Information Polynomial Point 
Alignment Curve Radius - Curve Direction - Superelevation x  

Location Grade - Cross Slope  x  

Lane Number of Lanes by Type – Lane Width x  

Median Median Type x  

Shoulder Shoulder Type – Shoulder Width x  

Barrier Barrier Type  x  

Rumble Strip Location (Edge Line vs. Shoulder vs. Centerline) x  

Sign MUTCD Code-  Message  x 
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In contrast to the other shapefiles in RID, the speed limit and advisory speed data (i.e. all sign-
related information) were in point format. Since the time-series data were also in point format, it 
was not possible to follow similar procedure detailed above to extract this type of data from the 
RID. To be able to do the conflation process, at least one of the two tables must be of line type. 
Therefore, to extract the speed limit data, polynomial shapefiles were developed from the sign 
inventory. To derive the information as to speed limit at each point, the “signs” shapefile from 
the RID was queried to identify those that represent the statutory speed limit information. 
MUTCD sign type R2-1 corresponds to the regulatory speed limit signs and was used to query 
the shapefile. The output from this query included location information (RouteID and mile 
point), as well as the associated sign message (i.e., the posted speed limit).  Speed limits were 
assumed consistent between two consecutive signs, meaning that the begin mile-point for each 
sign was the end mile-point for the previous sign. Consequently, using this line-based dBase, 
speed limit information was extracted following the conflation process outlined previously. 
While the outlined approach performed relatively well on conflating RID features to obtained 
trip traces, there were some issues that needed closer investigation and are detailed here:  

 Conflation Errors: Adjacency to other roadways may result in some conflation issues. 
During the data collection process by the mobile van, the collected data were assigned to the 
closest roadway, thus in some cases there may be multiple conflated information to a road 
segment.  

 Lack of Directional Data on Undivided Roadways: In the RID, divided roadways were 
assigned two different RouteIDs to account for each direction of travel lanes. However, this 
was not the case for undivided roadways, meaning that only one RouteID was specified for 
either of directions. Consequently, conflation of the attributes corresponding to the opposing 
direction was likely. This required further investigation of the resulting tables to match the 
coded attributes for the same side of the roadway centerline. Figure 10 displays a flow chart 
for the logic used to eliminate the irrelevant features extracted in the conflation process.  

 

FIGURE 10  Flow chart of the logic used to resolve the conflation issues. 
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Once these issues were resolved, comprehensive datasets including time-series data, geometric 
features from RID, and InSight supplementary data were created. Further details as to how the 
raw data were queried and requested, as well as dataset structures are discussed in the following 
sections that detail specific investigations.  
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4.0 SPEED SELECTION UNDER CONSTANT SPEED LIMITS 

The first research question investigated as part of this study involved examining speed profiles 
under constant posted speed limit. While the segments over which the speed profiles were 
analyzed included a wide variety of geometric characteristics and environmental conditions, they 
were not associated with multiple speed limits or advisory speed signs. Due to essential 
differences in the nature of freeways and two-lane highways, the speed profiles were examined 
separately for each of these facilities. The SHRP 2 InSight data included an extensive inventory 
of driving traces across all six states. To provide researchers with an opportunity to be able to 
analyze various scenarios, these reduced data were comprised of baseline events (i.e. normal 
driving events), as well as crash, near-crash, and other types of conflicts. Speed profiles were 
analyzed for near-crash and baseline events to examine how drivers select their travel speed 
under various roadway and environmental conditions.  

4.1 Data Summary 
Data were obtained for all crash, near-crash, and baseline events that had been reduced by the 
VTTI as of April 2016 for both freeways and two-lane highways across the six study states. The 
facility type was determined using the “Locality” field in the InSight event table. Events with 
locality type of “interstate/bypass/divided highway with no traffic signals” were selected as 
likely freeway events. On the other hand, events for which the locality field was marked as 
“bypass/divided highway with traffic signal” were identified as likely subjects to represent two-
lane highways. Consequently, the InSight data including events, trips, participants, and vehicle 
tables, as well as the InDepth data including the location, speed, and lateral 
acceleration/deceleration data were obtained for every candidate event. This resulted in a total of 
9,508 and 7,495 potential events for freeways and two-lane highways, respectively. However, as 
the locality field from InSight is not necessarily reflective of where the event occurred, an 
extensive quality control process was conducted for all events using the RID attributes and 
Google Earth. Different criteria including maximum speed limit, number of lanes, and presence 
of intersections along segments were used to categorize the data into potential freeways and two-
lane segments. One other factor that resulted in losing traces was improper GPS information or 
missing RID attributes, specifically posted speed limit which was the main focus of this study. 
Consequently, these resulted in significant reduction in the sample size yet providing sufficient 
data to examine the proposed research questions. Ultimately, a total of 4,909 and 2,898 events 
were identified on freeways and two-lane highways, respectively.  

The data used in this section were comprised of a series of 20-second snapshots of driving traces 
across all six study sites. The raw data provided by the VTTI included 20-second snapshots of 
trips for baseline events, whereas this extended to 30 seconds for safety critical events including 
20 seconds preceding the crash/near-crash start and 10 seconds following that. However, since 
the focus of this analysis was to investigate general drivers’ speed selection behavior, only the 
first 20 seconds of such incidents were included in the analysis. These 20-second snapshots were 
verified through a manual review to confirm they did not include the duration over which speeds 
were impacted by the incident. When involved in a crash or near-crash, there are myriads of 
other factors besides driver behavior that impact travel speed where abrupt breaking and marked 
speed variability occur. Unlike traditional data collection methods in which the exact start of the 
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crash or near-crash event was not evident, naturalistic driving study data allowed for accurate 
identification of time and location of crash/near-crash incidence. 

The same general procedure was utilized to develop each analysis dataset, which is briefly 
detailed here. The InDepth data provide longitude and latitude information on one-second 
intervals. Since the RID utilizes a linear referencing system (LRS), the first step to extract 
geometric information was to convert the InDepth coordinate information to the LRS. 
Consequently, geometric information, as well as cross-sectional characteristics corresponding to 
each trace was derived from the RID through eight shapefiles. This included information on: 
horizontal and vertical alignment; cross-slope; number, type, and width of travel lanes; type of 
median and shoulder; presence and type of barrier, rumble strips, and traffic signs; among others. 

Most of these shapefiles are of a segment nature, except for the sign shapefile, which is a point-
based layer. This file was primarily used to obtain speed limit information, which was critical for 
the purposes of this study. Consequently, a segment-based speed limit file was developed based 
on the assumption that the speed limit is consistent between consecutive signs in each direction, 
meaning that the begin mile-point for each sign was the end mile-point for the previous sign. 

The conflation process was conducted through the GIS by overlaying the acquired traces with 
each of the shapefiles. However, in some cases deriving geometric features was not possible due 
to missing GPS coordinates across all/parts of individual trips. Ultimately, all the extracted RID 
features were integrated with InSight tables (i.e. event details, trip information, vehicle features, 
and driver attributes) to achieve comprehensive datasets to examine the research questions.   

Figure 11 displays examples of one near-crash and one baseline incident across a segment posted 
at 70-mph. There is no sign of abrupt change over this duration of the near-crash. However, the 
speed profile displayed an evident sharp reduction later at around second 22, probably due to the 
driver reaction to the occurrence of the near-crash, which was not included in the analysis set. In 
all such cases, this pattern starts after the 20th second, and the speed seems stable prior. This was 
not only verified through visualization, but also by examining a field in the InSight data that 
indicated the timestamp the driver was believed to first notice the threat. As a result, these 20 
second snapshots were selected as surrogates of drivers’ choice of speed under constant speed 
limit across freeways and two-lane highways.  
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FIGURE 11  Example Speed Profiles of a Baseline and a Near-Crash Posted at 70 mph. 

 
Once all the data were integrated and reduced, a comprehensive dataset including a total of 4,375 
driving traces at four different posted speed limits ranging from 55-mph to 70-mph was created 
for freeways. The mean speed, as well as the speed standard deviation were calculated over the 
20-second duration of the travel for each trace. Figure 12 displays the boxplots for the mean 
travel speed at each speed limit. This indicates that as the posted speed limit increases so does 
the mean travel speed. However, such increases do not seem to emerge with a fixed stepped 
pattern as the mean speeds at 55- and 60-mph, as well as those at 65- and 70-mph fall closer to 
one another. 
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FIGURE 12  Box Plots of Mean Travel Speed by Posted Speed Limit on Freeways. 

In addition, research studies have generally shown the travel speed to be inversely impacted by 
traffic density (McLaughlin and Hankey 2015). The InSight data included a variable indicating 
the traffic density at time of travel and was used to investigate such impact in this study. This 
parameter defines traffic density based upon the level of service (LOS) measure, which is a 
qualitative measure that characterizes a roadway’s operational performance in consideration of 
highway users’ perceptions.  To visually assess the impact of traffic density on mean speeds, 
boxplots were generated at combinations of speed limit and level-of-service and are presented in 
Figure 13. As expected the travel speed was shown to be adversely impacted by poor LOS. 
However, the speeds were shown to be more stable at LOS A through C, while significant 
reductions are evident when reaching LOS D and beyond.  
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FIGURE 13  Boxplots of Mean Speed by Posted Speed Limit and Traffic Density on 
Freeways. 

As alluded to previously, a comprehensive dataset including variables describing roadway 
geometry, driver behavior, vehicle characteristics, and speed profiles was put together for each of 
the samples. To simplify the modeling steps and the subsequent discussion of results, a series of 
indicator variables were introduced for different categories of variables. Table 2 provides the 
summary statistics of the analyzed data where the mean value, as well as the standard deviation 
are presented for each variable. In case of binary indicators, the mean value is reflective of the 
percentage of sample possessing such characteristic.  

The summary statistics indicate that the dataset was relatively balanced considering the posted 
speed limit with the majority of traces belonging to 55- and 60-mph segments. However, this 
was not the case with traffic density where less than one percent of traces occurred at LOS F. 
Also, the data included information as to driver’s age and gender. The sample was balanced with 
respect to gender. On the other hand, the younger and older drivers were oversampled when 
recruiting participants for the naturalistic driving study (Antin et al. 2015) and such pattern was 
evident in this dataset, as well. Ultimately, these data were used to develop regression models to 
investigate driver’s choice of speed under different conditions and are furtherly discussed in later 
sections.  
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TABLE 2. Summary Statistics of Freeway Traces Under Constant Speed Limit 

Variable 
Minimum 

Maximum 
Mean 

Std. 
Dev. 

55-mph Limit 0 1 0.33 0.47 
60-mph Limit 0 1 0.32 0.47 
65-mph Limit 0 1 0.21 0.41 
70-mph Limit 0 1 0.14 0.35 
LOS A 0 1 0.53 0.50 
LOS B 0 1 0.34 0.47 
LOS C 0 1 0.08 0.27 
LOS D 0 1 0.04 0.18 
LOS E  0 1 0.02 0.12 
LOS F 0 1 <0.01 0.06 
Clear Weather 0 1 0.91 0.28 
Rain 0 1 0.08 0.28 
Snow/Sleet 0 1 0.00 0.07 
Non-Workzone 0 1 0.96 0.19 
Workzone 0 1 0.04 0.19 
Non-Junction 0 1 0.63 0.48 
Junction 0 1 0.37 0.48 
Upgrade 0 1 0.10 0.30 
Downgrade 0 1 0.05 0.22 
Female Driver 0 1 0.51 0.50 
Male Driver 0 1 0.49 0.50 
Driver Age: 16-24 0 1 0.38 0.49 
Driver Age: 25-59 0 1 0.41 0.49 
Driver Age:60 or 
above 0 

1 
0.21 0.41 

 
A similar dataset was created including 2,901 traces occurred on two-lane highways under 
constant speed limit. This dataset included a variety of posted limits ranging from 25 mph to 60 
mph depending on the state and area type (i.e. urban vs. rural). Figure 14 presents boxplots of the 
mean travel speed by posted speed limit. The pattern is similar to what was observed for 
freeways where the travel speed and posted speed limit were directly correlated. However, the 
interquartile ranges were found to be wider for two-lane highways which is indicative of more 
diverse speed choices on these facilities as compared to freeways. In addition, the difference in 
mean speeds between two consecutive limit seems to be decreasing when reaching higher posted 
limits.   
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FIGURE 14  Box Plot of Mean Travel Speed by Posted Speed Limit on Two-Lane 
Highways. 

In addition, the impact of traffic density on mean speeds was investigated through boxplots 
presented in Figure 15. It is imperative to note that unlike freeways, these traces did not cover all 
LOSs due to lower AADTs and the fact that they occurred in less urban areas. Such pattern was 
more evident at higher speed limits. For example, the traces under the 60-mph limit 
corresponded to only LOS-A and LOS-B, whereas more variation in traffic density was observed 
at lower limits.  



30 

 

FIGURE 15  Boxplots of Mean Speed by Posted Speed Limit and Traffic Density on Two-
Lane Highways. 

 
Like freeways, a series of binary indicators were introduced to represent various categories of 
variables included in the dataset. The descriptive statistics for a subset of variables is presented 
in Table 3. When looking at the speed limit indicators, one important point is the smaller 
percentages for 25-, 40-, 50-, and 60-mph limits compared to other limits. Also, the majority of 
traces occurred under LOS-A and LOS-B resulting in less than two percent of the sample having 
LOS-C or below. One other characteristic specific to two-lane highways is presence of various 
kinds of access points along segments. This includes, but is not limited to, intersections, 
driveways, and on-street parking; however, since all other types access points had very few 
frequencies, they were not included as separate categories in the analysis set. 
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TABLE 3. Summary Statistics of Two-Lane Traces Under Constant Speed Limit 

Variable Minimum Maximum Mean Std. Dev.  
25-mph Limit 0 1 0.05 0.22 
30-mph Limit 0 1 0.19 0.39 
35-mph Limit 0 1 0.21 0.41 
40-mph Limit 0 1 0.09 0.29 
45-mph Limit 0 1 0.23 0.42 
50-mph Limit 0 1 0.03 0.16 
55-mph Limit 0 1 0.18 0.38 
60-mph Limit 0 1 0.02 0.14 
LOS A 0 1 0.77 0.42 
LOS B 0 1 0.21 0.41 
LOS C 0 1 0.01 0.12 
LOS D 0 1 <0.01 0.05 
LOS E 0 1 <0.01 0.06 
LOS F 0 1 <0.01 0.02 
Clear Weather 0 1 0.92 0.27 
Rain 0 1 0.07 0.26 
Snow/Sleet 0 1 0.01 0.09 
Non-
Workzone 0 1 0.99 0.12 
Workzone 0 1 0.01 0.12 
Intersection 0 1 0.09 0.29 
Driveway 0 1 0.16 0.37 
Parking 0 1 0.08 0.27 
Upgrade 0 1 0.10 0.30 
Downgrade 0 1 0.05 0.21 
Male 0 1 0.49 0.50 
Female 0 1 0.51 0.50 
Age 16-24 0 1 0.36 0.48 
Age 25-59 0 1 0.36 0.48 
Age > 59 0 1 0.28 0.45 

 
4.2 Statistical Methods 
After the data were assembled, three general questions of interest were first investigated: 

1. How did speed limit and other roadway, driver, vehicle, and environmental factors affect 
the mean vehicle speed during each of the events? 

2. How did speed limit and other factors affect the standard deviation of speeds for 
drivers/vehicles during each event? 

3. How did speed limit, mean speed, and standard deviation in speeds affect the risk of 
crash/near-crash events while controlling for other pertinent factors? 
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These questions were the focus of separate preliminary analyses for both freeways and two-lane 
highways. For each facility type, a series of mixed-effect linear regression models were 
estimated. Mean speed and the standard deviation in speed over the first 20 seconds of each 
event was computed for the purpose of model estimation. The regression equations for each of 
these performances measure take the following form: 

𝑚𝑠௜ = 𝜷𝒊,𝒎𝒔𝑿𝒎𝒔 + 𝜀௜,௠௦                                   (Eq. 1) 
𝑠𝑑௜ = 𝜷𝒊,𝒎𝒔𝑿𝒔𝒅 + 𝜀௜,௠௦                                             (Eq. 2) 
 
where: msi is the mean speed (in mph) during event i; sdi is the calculated standard deviation of 
speeds during event i (in mph); X is a vector of speed limit, traffic, and roadway characteristics; 
’s are vectors of estimable parameters; and ’s are disturbance terms capturing unobserved 
characteristics normally distributed with mean zero and variance of 𝜎ଶ.  

One concern that arises within the context of this study is the anticipated correlation in speed 
selection behavior among the same individuals. From an analytical standpoint, it is important to 
account for the fact that specific drivers may tend to driver faster (or slower) than others (i.e., 
their general travel speeds are correlated across events).  Failing to account for such correlation 
would underestimate the variability in travel speeds and potentially lead to biased estimates for 
the impacts of specific factors, such as the speed limit or geometric characteristics. 
Consequently, a participant-specific intercept term, 𝛿௝, was introduced to account for the fact that 
specific drivers may tend to drive faster (or slower) than others due to factors that were not 
captured by the information from the NDS or RID. These may include differences in driving 
styles, risk perception, or other factors that affect speed selection.  This participant-specific term 
retained the same coefficient for each driver in every event (assuming the driver has multiple 
events in the database) and, thus, was able to capture general differences in speed selection 
behavior. This additional term was assumed to be normally distributed with mean of zero and 
variance of σ2; Consequently, the previous equations take the following forms: 

𝑚𝑠௜௝ = 𝜷𝒊,𝒎𝒔𝑿𝒎𝒔 + 𝜀௜,௠௦ + 𝛿௝,௠௦                                           (Eq. 3) 
𝑠𝑑௜௝ = 𝜷𝒊,𝒔𝒅𝑿𝒔𝒅 + 𝜀௜,௦ௗ + 𝛿௝,௦ௗ                                           (Eq. 4) 
 
where 𝛿௝ is an intercept term specific to driver j; this is what is generally referred to as mixed-
effect linear regression model. This section presents the results of these analyses and provides a 
discussion of the implications of these findings.    

4.3 Results and Discussion 
Table 4 and Table 5 provide results of the analyses for mean travel speed and standard deviation 
in travel speeds on freeways. For these facilities, a total of 4,375 events corresponding to 1,975 
unique drivers were analyzed. To gain a better understanding as to driver speed selection, 
separate models are provided for the overall sample, as well as a subset of events that occurred 
under level-of-service A. The reason for that is the fact that under traffic congestion, some 
parameters other than roadway geometry and drivers’ characteristics may influence drivers’ 
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choice of speed. This includes but is not limited to travel speed of those vehicles surrounding the 
subject vehicle.  

TABLE 4. Mixed Effect Linear Regression Model for Mean Speed on Freeways 

  Total Sample LOS-A Only Sample 
Random Effects:       

Groups Variance Std. Dev. 
 

Variance 
Std. 
Dev.  

Participant ID 17.920 4.233  19.350 4.399  
Residual 82.050 9.058   60.270 7.763   
Fixed Effects:    

   

Model Term  Coeff.  Std. Err. t-stat Coeff.  
Std. 
Err. 

t-stat 

Intercept 69.343 0.537 129.028 69.847 0.587 118.943 
55-mph limit -13.176 0.498 -26.443 -13.605 0.574 -23.708 
60-mph limit -9.766 0.518 -18.851 -9.163 0.612 -14.979 
65-mph limit -3.335 0.541 -6.168 -3.530 0.594 -5.939 
70-mph limit Baseline Baseline 
LOS A Baseline - 
LOS B -1.479 0.331 -4.473 - 
LOS C -8.455 0.577 -14.644 - 
LOS D -27.004 0.823 -32.826 - 
LOS E -40.907 1.194 -34.275 - 
LOS F -46.167 2.590 -17.823 - 
Non-junction Baseline Baseline 
Junction -1.758 0.312 -5.637 -2.578 0.392 -6.578 
Non-work 
zone 

Baseline 
   

Work zone -3.606 0.776 -4.648 -3.219 1.096 -2.937 
Clear weather Baseline Baseline 
Rain -2.222 0.536 -4.146 -2.403 0.696 -3.452 
Snow or sleet -12.336 2.205 -5.596 -13.094 2.439 -5.368 
Age 16 to 24 3.795 0.465 8.162 3.589 0.528 6.804 
Age 25 to 59 2.479 0.467 5.306 2.340 0.535 4.372 
Age 60 or 
above 

Baseline Baseline 

Null Log-Likelihood -17,760  -8,794 
Log-Likelihood -16,213  -8,333 
Null AIC 35,416  17,592 
AIC 32,460  16,690 
Null BIC 35,429  17,603 
BIC 32,568  16,759 
Number of Observations: 4,375  Number of Observations: 2,320 
Number of Participants: 1,975  Number of Participants: 1,432 
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Starting with the entire sample, the average speed on freeways with a 70-mph posted limit was 
found to be 69.3 mph. Speeds were approximately 3.3 mph lower on freeways posted at 65 mph 
(mean of 66.0 mph). More pronounced decreases occurred on the lower speed freeways as the 
mean speeds were 56.1 and 59.5 mph where speed limits were 55 and 60 mph, respectively. This 
is consistent with prior research showing that speed limit increases result in changes in the 
observed mean and 85th percentile speeds that are less pronounced than the actual speed limit 
increases (Lynn and Jernigan, 1992; Ossiander and Cummings, 2002; Freedman and Esterlitz, 
1990; Parker, 1997; Kockelman et al., 2006; Davis et al., 2015; Hu, 2017; Johnson and Murray, 
2010).  

Beyond speed limits, mean speeds were also largely affected by the level of traffic congestion 
present at the time of the event. Speeds were relatively stable across levels-of-service A and B, 
but began to drop significantly under LOS C and, particularly, at LOS D, E, and F. As shown by 
various prior studies (Emmerson, 1969; McLean, 1981; Glennon et al., 1983; Lamm and 
Choueiri, 1987; Kanellaidis et al., 1990) speed selection was also highly dependent upon the 
roadway environment as speeds decreased significantly in work zones (3.6 mph) and under 
adverse weather conditions (2.2 mph in rainy and 12.3 mph in snowy weather).  

As far as drivers’ characteristics, travel speeds were shown to be considerably higher among 
younger and middle-aged drivers. The mean speeds were found to be approximately 3.8 mph 
greater for those age under 24, whereas this effect is reduced to 2.5 mph when considering 
drivers between 25 and 59, compared to elderly drivers. All parameters included in the model 
were statistically significant under a 95-percent confidence interval (i.e. t-value greater than 
1.96).  

The results are generally consistent for those events that occurred under free-flow conditions 
(i.e., LOS A), although a few notable differences were found. When considering only those 
events occurring during LOS A, slight differences were observed across all four speed limit 
categories. Mean speeds were roughly 0.5 mph greater across the four speed limits when 
considering those events under LOS A as compared to those of the entire sample. Also, the 
events under free flow condition were shown to be more impacted by presence of roadway 
junctions (i.e. interchanges) which is probably due to the unexpected interruptions resulting from 
weaving movements. The impact of adverse weather condition, as well as drivers’ age were 
found to be consistent between the two models. 

Table 5 includes the results of the random effect model developed for speed standard deviation 
across freeways. As shown by prior research in this area (Emmerson 1969), speeds tended to 
become more consistent (i.e., lower variability) as speed limits increased. The results indicated 
no statistically significant difference in speed variability between events under 70- and 65-mph 
limits. A recent Michigan study has shown similar results (Gates et al. 2015), with speeds being 
significantly more variable on 55-mph urban freeways, suggesting these findings are transferable 
across states. As expected, the variability in travel speeds was predominantly affected by the 
level of congestion. The standard deviation was lowest under LOS A and highest under LOS E, 
where an approximate difference of 2 mph was observed. Speeds were also highly variable 
within work zone environments and across interchange areas. 
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TABLE 5. Mixed Effect Linear Regression Model for Speed Standard Deviation on 
Freeways 

Random Effects:        
Groups Variance Std. Dev.  
Participant ID 0.274 0.523  
Residual 4.142 2.035  
Fixed Effects:       
Model Term  Coeff.  Std. Err. t-stat 
Intercept 0.987 0.063 15.775 
55-mph limit 0.864 0.079 10.959 
60-mph limit 0.364 0.084 4.345 
65-mph limit Baseline 
70-mph limit Baseline 
LOS A Baseline 
LOS B 0.412 0.071 5.823 
LOS C 1.237 0.124 9.992 
LOS D 2.183 0.177 12.349 
LOS E 2.344 0.258 9.085 
LOS F 1.173 0.561 2.090 
Non-junction Baseline 
Junction 0.484 0.067 7.254 
Non-work zone Baseline 
Work zone 0.360 0.166 2.175 
Null Log-Likelihood -9722   
Log-Likelihood -9448   
Null AIC 19448   
AIC 18919   
Null BIC 19461   
BIC 18996   
Number of Observations: 4,375    
Number of Participants: 1,975    

 

Turning to two-lane highways, many of the same factors were found to influence driver speed 
selection. Table 6 and Table 7 provide results of similar analyses conducted on two-lane 
highways. On these facilities, mean speeds were generally near the posted limit under low-speed 
conditions, but tended to decrease below the posted limit at higher speeds. For example, the 
mean speed was around 26.2 mph and 34.6 mph at 25- and 35-mph limits, respectively. 
However, starting from 40-mph limit, travel speeds started to drop below the posted limit. No 
significant differences were observed between the segments posted at 55 and 60 mph where 
mean speeds turned out to be much lower than the posted limit (nearly 50 mph). This is largely 
reflective of the larger number of urban highways included in the NDS sample, where speeds are 
significantly lower as compared to more rural facilities.   
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TABLE 6. Mixed Effect Linear Regression Model for Mean Speed on Two-Lane Highways 

  Total Sample LOS A Only 
Random Effects:     

   
Groups Variance Std. Dev.   Variance Std. Dev. 
Participant ID 7.470 2.733  13.090 3.618  

Residual 80.380 8.966   78.030 8.833   
Fixed Effects:    

   

Model Term  Coeff.  Std. Err. t-stat Coeff.  
Std. 
Err. 

t-stat 

Intercept 49.314 0.502 98.332 49.801 0.564 88.263 
25-mph limit -23.114 0.872 -26.516 -23.213 0.970 -23.937 
30-mph limit -21.551 0.585 -36.862 -21.514 0.676 -31.846 
35-mph limit -14.727 0.557 -26.454 -14.916 0.635 -23.488 
40-mph limit -11.242 0.705 -15.949 -11.538 0.795 -14.505 
45-mph limit -7.811 0.544 -14.367 -8.130 0.619 -13.127 
50-mph limit -4.864 1.133 -4.292 -5.769 1.375 -4.195 
55/60-mph limit Baseline Baseline 
LOS A Baseline N/A 
LOS B -1.362 0.434 -3.135 N/A 
LOS C -6.245 1.450 -4.307 N/A 
LOS D -11.307 3.322 -3.404 N/A 
LOS E -23.639 3.135 -7.541 N/A 
LOS F - N/A 
No access points Baseline Baseline 
Driveway -0.874 0.486 -1.798 -1.195 0.558 -2.141 
Intersection -2.339 0.616 -1.798 -1.728 0.736 -2.349 
On-street parking -4.413 0.616 -3.797 -5.032 0.731 -6.887 
Non-work zone Baseline Baseline 
Work zone -3.783 1.481 -2.555 -6.405 1.877 -3.412 
Degree of Curvature -0.013 0.005 -2.746 -0.011 0.005 -2.107 
Clear/rainy weather Baseline Baseline 
Snow or Sleet -7.588 2.006 -3.782 -8.771 2.302 -3.811 
Age 16 to 24 1.924 0.469 4.107 1.418 0.544 2.608 
Age 25 to 59 1.118 0.469 2.382 0.665 0.544 1.221 
Age 60 or above Baseline Baseline 
Null Log-Likelihood -11464   -8835 
Log-Likelihood -10600   -8196 
Null AIC 22932   17673 
AIC 21242   16425 
Null BIC 22944   17685 
BIC 21368     16552 
Number of Observations: 2,901     
Number of Participants: 1,593     
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As with freeways, traffic congestion was a primary determinant of travel speeds, reducing mean 
speeds by as much as 23.7 mph at LOS E. Similarly, speeds were shown to be relatively 
consistent across LOS A and B and began to drop markedly starting from LOS C. Unlike 
freeways, no event occurred under LOS F. Speeds were also significantly reduced in the vicinity 
of access points including driveways and intersections, as well as in presence of on-street 
parking. Among these, on-street parking had the highest impact with approximately 4.5 mph 
reduction in travel speeds. However, this effect is much lower near driveways and intersections 
where mean speeds dropped by 0.9 and 2.3 mph, respectively. Similarly, marked reductions were 
observed across workzones and under snowy weather condition. However, the results indicated 
no differences between clear and rainy weather condition which could be attributed to the 
general lower speeds on two-lane highways as compared to freeways.  

TABLE 7. Mixed Effect Linear Regression Model for Speed Standard Deviation on Two-
Lane Highways 

Random Effects:        
Groups Variance Std. Dev.  
Participant ID 7.470 2.733  
Residual 80.380 8.966   
Fixed Effects:     
Model Term  Coeff.  Std. Err. t-stat 
Intercept 2.476 0.117 21.193 
25-mph limit 1.061 0.267 3.969 
30-mph limit 1.184 0.173 6.835 
35-mph limit 0.809 0.167 4.855 
40-mph limit 1.007 0.214 4.705 
45-mph limit 0.51 0.163 3.127 
50-mph limit Baseline 
55/60-mph limit Baseline 
LOS A Baseline 
LOS B Baseline 
LOS C or Below 0.894 0.382 2.342 
No access points Baseline 
Driveway Baseline 
Intersection Baseline 
On-street parking 0.474 0.199 2.381 
Degree of Curvature 0.003 0.001 1.973 
Number of Observations: 2,901  

Number of Participants: 1,593  

  
One other difference between the two facilities was the significant impact of horizontal curvature 
on mean speeds across two-lane highways. This probably relates back to the lower design 
standards of these segments and the fact that much sharper curves are permitted to be built. The 
effect of horizontal alignment on travel speed is investigated at length in Chapter 6. 
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Like freeways, younger drivers were shown to travel at higher speeds compared to middle aged 
and older drivers. However, this effect was found to be smaller on two-lane highways which is 
probably due to the inherent differences between the nature of these facilities and the fact that 
two-lane highways do not allow for speeding as much. The author also investigated separate 
models for individual states; however, there found to be significant variability among coverage 
of a lot of these factors by individual states, resulting in insufficient samples in most cases.  

As for the variability in speed, speeds were generally shown to be less variables at higher speed 
limits; however, some noises were observed which could be due to the sample size variation 
mentioned previously in the data sections. Also, speeds were shown to have more fluctuations 
under LOS C and below, a pattern found with the freeway events, as well. No additional 
differences were identified in the variability in speeds at lower LOSs due to the limited number 
of events available under such conditions.  

Generally, the mixed-effect models were shown to provide improved fit as compared to simple 
linear models which is reflective of differences in driving patterns between different individual 
drivers. The select speeds were found to be variable among drivers as much as 4 mph on 
freeways, whereas this variability reduced to approximately 3 mph on two-lane highways.  

Ultimately, this section of the report provides insights as to how drivers select their travel speed 
on freeways and two-lane highways. Drivers were found to adapt their speeds based upon 
changes in the roadway environment. Turning to the primary factor of interest, higher speed 
limits were found to result in higher travel speeds. However, the increases in travel speeds 
tended to be less pronounced at higher posted limits, which is consistent with recent research in 
this area (Burritt et al., 1976). Drivers tended to reduce their travel speeds along horizontal 
curves, under adverse weather conditions, and particularly under heavy congestion. The 
variability in travel speeds was also found to be influenced by several factors, including the 
posted speed limit, as well as the presence of congestion or work zone activities.  
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5.0 SPEED SELECTION ACROSS SPEED LIMIT TRANSITION AREAS 

In addition to examining driver speed selection under fixed speed limits, a related item of interest 
is how drivers adapt their speeds when speed limits increase or decrease. This issue has 
important practical value as transportation agencies are often tasked with trying to control traffic 
speeds in high-risk scenarios, such as in work zone environments or under adverse weather 
conditions. It is also of general interest to discern how drivers alter their travel speeds when 
speed limits change. This section briefly summarizes a preliminary investigation of driver speeds 
while traversing through transition areas, where speed limits are either increased or decreased.  

For each facility type, random effects linear regression models are estimated, which detail how 
speeds change when a speed limit reduction or increase is introduced. Side-by-side results are 
provided for freeways and two-lane highways, respectively. In each case, the mean baseline (i.e., 
pre-speed limit change) speed is provided, along with estimates of the mean increase (or 
decrease) in speeds associated with speed limit changes of 5 to 15 mph for freeways and 5 to 25 
mph for two-lane highways. For both facility types, degree of curve was also shown to have an 
impact on speed. 

5.1 Data Summary 
Data were obtained for speed limit transition areas along both freeways and two-lane highways 
to gain a better understanding as to how drivers adjust their speeds when posted limits are 
increased or decreased. According to the manual on uniform traffic control devices (MUTCD), 
each sign is associated with a code identifier. This is equal to 218 for regulatory speed limit 
signs. Using the RID sign shapefile, speed limit signs, the associated message, and the 
corresponding location were extracted across the six study sites. Consequently, a line shape file 
was developed using these point data with an assumption that speed limit remains constant 
between every two consecutive speed limit signs. Subsequently, by overlaying the link layer 
from RID -which consists of short roadway segments generated through the data collection 
process- with this speed limit layer, the links along which the speed limit changed were 
identified. Next, select links were manually investigated using the Google Earth add-in in 
ArcMap to confirm that the links do satisfy the required condition. In addition to the speed limit 
criterion, the research team ensured with the VTTI that at least 10 traces corresponding to unique 
drivers are available along each of the requested links. Ultimately, unique link IDs were 
identified for a total of 79 and 106 locations across freeways and two-lane highways, 
respectively. This resulted in acquisition of a total of 2,578 and 2,940 traces across each of these 
facilities.  

When examining the select links, they were found to vary significantly in their lengths and in the 
relative location of the sign to the link’s beginning/end. Consequently, the time-series data were 
obtained for the 30 seconds immediately upstream and downstream of each identified link to 
capture sufficient data while approaching and passing the speed limit sign. For the purpose of 
analysis, fixed segments of up to 1000 ft upstream and downstream of the sign were created. 
This helped to better capture the drivers’ behavior across the transition areas. This included 
segments where the speeds were stable under the initial posted limit, when the driver first noticed 



40 

the sign (approximately 400 ft upstream of the sign), and sufficient distance when they passed 
the sign until they reached a stable speed, again.  

As mentioned previously, the location information was collected with a frequency of 1 Hz, while 
the speed information had higher resolution with frequency of 10 Hz. After some preliminary 
analysis, it was shown that using the time-series data with a 10-Hz frequency may provide finer 
and more accurate results in the analysis of these types of segments. As a result, first the 
obtained time-series were overlaid with the generated segments to extract the portions of trips 
that fell along these segments. Subsequently, the position of the vehicle during the intermediate 
time stamps were approximated using the travel speed calculated by equations 5 and 6:  

𝑥(௧) =  𝑥(௧ି଴.ଵ) +  𝑣(௧ି଴.ଵ)  ∗  1.47 ∗  0.1        (Eq. 5) 
 
𝑥(௧) = 𝑥(௧ା଴.ଵ)  −  𝑣(௧)  ∗  1.47 ∗  0.1        (Eq. 6) 
 
where 𝑥(௧) is the location of the vehicle at timestamp t; 𝑣(௧) is the travel speed at timestamp t in 
mph; and 1.47 is the conversion factor between mph to ft/s as the locations were measured in feet 
rather than miles. This resulted in identification of the location of all points included in the 
analysis set and their relative distance to the sign. Figure 16 displays a randomly selected trace 
going through a 5-mph increase in the posted speed limit prior and following to location 
interpolation.  

 

FIGURE 16  Example of a Trace with and without Location Interpolation. 
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Utilizing the fixed segments as base layer for each of the identified signs also helped to resolve 
the issue of mixed directions on two-lane highways. While there were unique route identifiers for 
each direction of travel on divided roadways, single route identifier was assigned to both 
directions on undivided roadways that may occasionally result in the information of the opposing 
direction being conflated to the data in the direction of travel.  

In addition to approximating the vehicle location using the above equations, the geometric 
attributes across the intermediate time stamps were filled using the fill-forward method first, and 
the fill-backward method next. In other words, the geometric attributes were assumed to remain 
constant until a second observation was recorded. In case of missing geometric data during the 
beginning of a trace, when no information has yet been recorded, the data were filled using the 
succeeding observations.  

Candidate locations were selected with an aim to cover a wide range of speed limit and speed 
limit changes, as well as geometric characteristics across both freeways and two-lane highways. 
However, differences in sample size across speed limits were inevitable due to prevalence of 
certain limits and limit changes across states.  Table 8 provides an overview of the frequency of 
trips obtained at each speed limit by size of speed limit change. For freeways, the 55- and 65- 
mph limits had the highest frequencies which was due to the fact that two states in the study (i.e. 
New York and Pennsylvania) have only 55- and 65-mph limits in place. Consequently, traces 
under 10-mph increase/reduction had the majority, as well.  

TABLE 8. Number of Obtained Trips by Speed Limit and Size of Speed Limit Change on 
Freeways 

Initial Speed Limit (mph) 
Size of Speed Limit Change (mph)   
-15 -10 -5 5 10 15 Total 

55 - - - - 584 213 797 
60 - - - 62 197 - 259 
65 - 735 75 228 - - 1,038 
70 190 198 155 - - - 543 
Total 190 933 230 290 781 213 2,637 

 
Table 9 provides similar information for the number of trips obtained across two-lane highways. 
In this case, traces covered a wider range of limits and limit changes. Traces under 35- and 45-
mph accounted for approximately half of the sample, whereas the traces under 60-mph had the 
minimum frequency. As far as frequencies across various limit changes, traces under 10-mph 
reduction held the highest frequency with 813 trips. On the other hand, there were only 97 traces 
undergoing a 15-mph reduction in posted speed limit. A few cases with 25 mph 
reduction/increase were identified, as well; however, these trips had to be removed from the 
sample due to limited frequencies.  
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TABLE 9. Number of Obtained Traces by Speed Limit and Size of Speed Limit Change on 
Two-Lane Highways 

Initial Speed Limit 
(mph) 

Size of Speed Limit Change (mph)   
-20 -15 -10 -5 5 10 15 20 Total 

25 - - - - 30 174 48 - 252 
30 - - - 17 40 76 38 - 171 
35 - - 135 41 78 338 - 138 730 
40 - 32 72 73 160 62 - - 399 
45 7 51 291 184 - 223 - - 756 
50 - 14 88 26 31 - - - 159 
55 129 - 227 37 42 - - - 435 
60 - - - 46 - - - - 46 
Total 136 97 813 424 381 873 86 138 2,948 

 
 
Figure 17 and Figure 18 display boxplots of travel speeds at various limits and limit changes 
upstream of the regulatory speed sign for freeways and two-lane highways, respectively. These 
plots show the travel speed at each speed limit separated by the upcoming limit change. Any 
differences between plots within a single speed limit are indicative of variations in speed 
selection patterns upstream of speed limit signs.  

 

FIGURE 17  Upstream Travel Speeds by Posted Speed Limit and Size of Upcoming Speed 
Limit Change on Freeways. 
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FIGURE 18  Upstream Travel Speed by Posted Speed Limit and Size of Upcoming Speed 
Limit Change on Two-lane Highways. 

One other important issue related to speed selection behavior was the lack of traffic congestion 
information along these segments since the events were not necessarily among those reduced by 
VTTI. As such, no information was available to indicate whether the speed profiles are reflective 
of drivers’ own choice of speed or they were essentially imposed from outside. To resolve this 
issue, forward video data for all the obtained trips were requested by the research team for 
review. In this process, video data were reviewed by team members with an aim to identify any 
incident, object, or condition that may potentially impact the select speed. Information was 
collected regarding presence of leading vehicles or pedestrians, weather condition, time of day 
(i.e. day versus night), and presence of workzones along the trip. This information was collected 
as a series of indicator variables that may simply be included in the models.   

Figure 19 and Figure 20 display the information extracted from the video data for freeways and 
two-lane highways, respectively. These results indicate presence of leading vehicles in 
approximately 50 percent of the trips across both facilities. Also, while the majority of trips 
occurred under clear or cloudy weather conditions, nearly 6.5 percent of trips took place under 
snowy weather. The attempt was to match the data elements between these datasets with those 
available from the InSight reduced data described in the previous section to the extent possible.  

The reduced video data were integrated with the time-series data to account for other factors 
such as presence of a leading vehicle that could have potentially altered drivers’ select speed. 
However, video files were missing in some cases due to the cameras’ malfunction or other 
reasons resulting in losing some traces when using the video data.  
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FIGURE 19  Overview of Reduced Video Data for Freeways Transition Areas. 

 

FIGURE 20  Overview of Reduced Video Data for Two-Lane Highway Transition Areas. 
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5.2 Statistical Methods 
Like the previous section, speed analysis was conducted through estimation of mixed-effect OLS 
regression models. However, in this case speed profiles were included as time-series data instead 
of averaging the speed over the entire trip duration. This was imperative as the pattern in the 
speed profiles was of interest. Consequently, although the statistical models presented in this 
section are similar to those presented previously, there are some important differences to note 
with respect to how these analyses were conducted. In addition to the participant specific term 
described in the previous section, two other intercept terms were introduced. The first one was 
trip-specific that may vary across trips but retained same value for each individual trip. This 
parameter accounts for unobserved factors that are unique to each event. The second term was 
location specific and was designed to capture the correlation between traces that took place at 
same locations. Ultimately, the travel speed at each point is estimated through OLS regression 
models using the following equation:  

𝑆௜௝௞
(௧) = 𝜷𝒊

(𝒕)𝑿𝒊
(𝒕) + 𝜀௜

(௧) + 𝛿௝ + 𝛾௜ + 𝜁௞       (Eq. 7) 
 
where 𝑆௜௝௞

(௧) is the travel speed corresponding to trip i, driver j, and location k at timestamp t; 

𝜷𝒊
(𝒕) is the vector of estimable coefficients, 𝑿𝒊

(𝒕) is a vector of roadway geometric features, 
traffic attributes, and driver behavior/characteristics at timestamp t; ε୧

(୲) is an error term 
capturing unobserved heterogeneity; 𝛿௝ is the driver-specific term corresponding to driver j to 
account for potential correlations between different observations corresponding to same 
individuals; 𝛾௜ is an intercept term corresponding to event i to capture correlations between 
observations within a single trip; and 𝜁௞ is the location specific intercept that controls for 
unobserved heterogeneity in events corresponding to same location k. These intercept terms are 
assumed to be normally distributed with mean of zero and variance of σ2.   

In essence, these terms captured the effects of important, unobserved variables that would 
otherwise lead to biased or inefficient parameter estimates.  For example, some drivers may tend 
to drive faster (or slower). Consequently, δj is a parameter that retains the same coefficient for 
each driver in every trip (assuming the driver has multiple events in the database) and, thus, is 
able to capture general differences in speed selection behavior.  Likewise, 𝛾௜  and 𝜁௞  are 
parameters that account for unobserved factors that are unique to each specific trip and location, 
respectively.  Adding these participant-, trip-, and location- specific terms results in what is 
commonly referred to as a random effects model.  While these effects are specific to each trip or 
study participant, they are a random sample from the broader driving population.  

5.3 Results and Discussion 
For each facility type, random effects linear regression models were estimated, which detail how 
speeds change when a speed limit reduction or increase is introduced. In each case, the mean 
baseline (i.e., pre-speed limit change) speed is provided, along with estimates of the mean 
increase (or decrease) in speeds associated with speed limit changes of 5 to 15 mph for freeways 
and 5 to 20 mph for two-lane highways. Table 10 demonstrates the results of the mixed linear 
regression model estimated for freeway trips across transition areas.  
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TABLE 10. Mixed Effect Linear Regression Model for Travel Speed across Speed Limit 
Transition Areas on Freeways 

  Total Sample No Leading Vehicle Sample 
Random Effects:     

Groups Variance Std. Dev. Variance Std. Dev. 
Trip ID 17.238 4.152  15.979 3.997  
Location ID 3.930 1.982  5.195 2.279  
Participant ID 3.893 1.973  2.685 1.639  

Residual 2.247 1.499  1.924 1.387  

Fixed Effects:  
  

Model Term  Coeff.  Std. Err. t-stat Coeff.  Std. Err. t-stat 
Intercept 63.780 0.358 177.924 63.521 0.386 164.672 
55-mph limit Baseline Baseline 
60-mph limit Baseline Baseline 
65-mph limit 0.934 0.281 3.326 0.863 0.269 3.206 
70-mph limit 2.990 0.443 6.752 2.320 0.416 5.575 
5-mph limit reduction -0.341 0.018 -19.471 -0.891 0.024 -37.931 
10-mph limit reduction -1.012 0.010 -104.750 -0.768 0.012 -62.712 
15-mph limit reduction -1.422 0.026 -54.726 -1.429 0.028 -51.330 
5-mph limit increase 0.745 0.015 51.123 0.686 0.018 38.402 
10-mph limit increase 1.118 0.010 107.972 1.077 0.013 81.851 
15-mph limit increase 1.515 0.021 70.882 1.371 0.026 53.488 
No Leading Vehicle Baseline - 
Leading Vehicle Present -0.448 0.242 -1.853 - 
Clear weather Baseline Baseline 
Rain -1.079 0.469 -2.299 N/S 
Snow  N/S N/S 
Age 16 to 24 2.080 0.335 6.204 2.501 0.439 5.702 
Age 25 to 59 2.150 0.320 6.714 2.357 0.420 5.619 
Age 60 or above Baseline Baseline 
Null Log-Likelihood -1221717  -582588 
Log-Likelihood -562107  -297148 
Null AIC 2443437  1165180 
AIC 1124249  594325 
Null BIC 2443459  1165200 
BIC 1124429   594475 
Number of Observations: 304,799 Number of Observations: 168,140 
Number of Events: 1,525 Number of Events: 829 
Number of Participants: 951 Number of Locations: 623 
Number of Locations: 262 Number of Participants: 218 
N/S: Not Significant  
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For such traces, it is interesting to note that speeds remained relatively stable, regardless of the 
posted limit. No differences were observed between mean speeds at 55- and 60-mph limits where 
the mean speeds were approximately 63.8 mph. The mean speeds increased by only 0.9 mph at 
65 mph and approximately 3 mph at 70 mph (both values relative to the 55-/60-mph limits). This 
indicates that travel speeds are significantly above the posted limits upstream of the transition 
points at lower limits, whereas the opposite is true at 65- and 70-mph limits. This probably 
relates back to the nature of these trips. It is imperative to keep in mind that all traces at 70-mph 
initial speed limit were upstream of a speed reduction zone, whereas the traces at 55-mph initial 
speed limits were all followed by speed limit increases of 10 or 15 mph. This could be another 
reason for the observed mild speed differences, meaning that drivers start to adjust their speeds 
upstream of the sign, before limit change occurrence. As shown by past literature, drivers tended 
to change their speeds by lesser amounts at higher posted limits (Parker, 1997; Kockelman et al., 
2006; Mannering, 2007).  

When changes did occur, the actual speed changes were significantly less than the associated 
change in the posted limit. For example, increases of 5, 10, and 15 mph, result in increases of 
0.7, 1.1, and 1.5 mph, respectively. When speed limits were reduced, similarly muted impacts 
occurred. When limits were reduced by 5 mph, travel speed decreased by only 0.3 mph; this 
reduction was slightly greater when limits were reduced by 10 and 15 mph; travel speeded 
reduced by 1.0 and 1.4 mph at each of these limit changes, respectively. It is important to note 
that while these reductions turned out to be much smaller than expected, they were all 
statistically significant at a 99 percent confidence interval; meaning that though minimal, some 
changes in travel speed did occur across transition areas.  

Similar to the results from the preceding analyses, some other variables were also found to 
significantly impact travel speeds aside from posted limits. Presence of a leading vehicle was 
shown to reduce the mean speeds by approximately 0.5 mph. In addition, travel speeds were 
found to be lower under rainy weather condition; however, no significant effect associated with 
snowy weather was found which is probably due to the limited sample size available for such 
trips. Again, mean speeds were shown to be higher among younger and middle-aged drivers. 

In addition, a separate model was estimated for those events that were not found to follow any 
leading vehicle. This was done with an aim to examine drivers’ select speed under free-flow 
condition. Parameter estimates were found to be relatively stable between the two models. 
However, the coefficients for the two age categories slightly increased which is probably 
reflective of more opportunities for speeding when no leading vehicle was present. The slight 
reductions in speeds in absence of leading vehicles (compared to the total sample), as well as the 
increased estimates for driver age indicate that when other vehicles are present drivers tend to 
adjust their speeds with regard to the moving flow. When examining the goodness-of-fit 
measures, both models were shown to be relatively successful.   

Turning to the results for the analysis of two-lane highway trips, presented in Table 11, speeds 
were comparable on highways posted at 25 or 30 mph where no statistically significant 
difference was observed. As in the analyses presented previously, travel speeds tended to 
increase by lesser amounts at higher posted speed limits with an exception for those at 60-mph.  
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TABLE 11. Mixed Effect Linear Regression Model for Travel Speed across Speed Limit 
Transition Areas on Two-Lane Highways 

  Total Sample No Leading Vehicle Sample 
Random Effects:     

Groups Variance Std. Dev. Variance Std. Dev. 
Trip ID 16.369 4.046  14.793 3.846  
Location ID 1.580 1.257  3.468 1.862  
Participant ID 13.554 3.682  11.550 3.399  

Residual: 5.572 2.360  4.816 2.195  

Fixed Effects:  
  

Model Term  Coeff.  Std. Err. t-stat Coeff.  Std. Err. t-stat 
Intercept 36.519 0.585 62.406 36.879 0.643 57.398 
25-mph limit Baseline Baseline 
30-mph limit Baseline Baseline 
35-mph limit 2.798 0.663 4.222 2.938 0.722 4.068 
40-mph limit 5.689 0.812 7.003 5.265 0.848 6.208 
45-mph limit 7.007 0.675 10.378 6.886 0.718 9.589 
50-mph limit 10.483 1.036 10.121 10.120 1.170 8.650 
55-mph limit 11.896 0.775 15.355 11.897 0.830 14.334 
60-mph limit 21.139 2.173 9.729 21.668 2.191 9.888 
5-mph limit reduction -1.198 0.023 -52.281 -1.183 0.028 -41.531 
10-mph limit reduction -2.579 0.016 -159.506 -2.634 0.020 -130.610 
15-mph limit reduction -3.622 0.053 -68.732 -3.147 0.072 -43.554 
20-mph limit reduction -6.032 0.064 -94.657 -6.308 0.083 -75.702 
5-mph limit increase 1.479 0.024 62.140 1.352 0.027 49.241 
10-mph limit increase 1.988 0.016 121.862 1.995 0.020 101.844 
15-mph limit increase 1.937 0.070 27.538 1.344 0.092 14.592 
20-mph limit increase 3.069 0.051 60.150 3.802 0.073 51.937 
Degree of Curvature -0.162 0.003 -53.339 -0.241 0.004 -53.652 
No Leading Vehicle Baseline - 
Leading Vehicle Present -1.210 0.240 -5.046 - 
Age 16 to 24 1.306 0.293 4.462 1.836 0.392 4.680 
Age 25 to 59 0.878 0.293 2.993 0.951 0.393 2.419 
Age 60 or above Baseline Baseline 
Null Log-Likelihood -1,299,120  -738,458 
Log-Likelihood -696,226  -386,818 
Null AIC 2,598,245  1,476,919 
AIC 1,392,498  773,681 
Null BIC 2,598,267  1,476,940 
BIC 1,392,743   773,902 
Number of Observations: 303,230 Number of Observations: 173,892 
Number of Events: 1,491 Number of Events: 864 
Number of Participants: 1,046 Number of Locations: 666 
Number of Locations: 410 Number of Participants: 351 
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This could be due to the limited sample available for these traces as presented in Table 9, as well 
as the fact that only one type of limit change (i.e. 5-mph reduction) occurred at this limit. Also, 
travel speeds were shown to be markedly above the posted limit at lower speeds and below the 
posted limit at higher limits. This is a similar trend to that observed with freeway trips. The mean 
speeds were shown to be significantly above the posted limit at 25 and 30 mph (approximately 
36 mph). It is essential to note that all trips at an initial speed limit of 25 mph were upstream of a 
speed limit increase zone with the majority undergoing a 10-mph increase.  On the other hand, 
all trips under 60-mph limit and approximately 90 percent of those at 55-mph limit went through 
speed limit decreases.  

Interestingly, the speed limit changes were associated with much greater impact on two-lane 
highways than on freeways. For example, speeds were shown to decrease by 3.6 and 2.6 mph 
where reductions of 15 and 10 mph occur. These values are roughly two times greater than what 
was observed for freeways. Much of this may be attributable to the nature of two-lane highways 
as speed changes generally occur in concert with changes in functional class, land use, access 
density, and in other ways that significantly alter the driving environment. Drivers were found to 
decrease their speeds by roughly 1.2 mph for every 5-mph reduction in the posted limit. 
Reductions of 10, 15, and 20 mph in posted limit decreased mean speeds by only 2.5, 3.6, and 6 
mph. It is interesting that much larger changes occurred when the speed limit was decreased as 
opposed to increased, which may be reflective of concerns as to speed enforcement in addition to 
some of the other factors noted previously. 

Although the speed changes seem to be much lower than what was expected, it is crucial to 
interpret the results considering both mean baseline speeds and the trip frequencies. For example, 
all trips at a 60-mph initial limit went through a 5-mph limit increase. For these traces, mean 
baseline speed was around 57.6 mph upstream and 56.5 mph downstream the sign. Likewise, 
upstream mean speed was found to be 48.5 mph where initial posted limit was 55 mph. When 
looking at the frequency distribution of trips, nearly 50 percent of such trips went through a 10-
mph limit reduction. Adding such reductions’ associated parameter estimate results in a 
downstream speed of 46 mph which is comparable to the downstream speed limit of 45 mph. 
These results indicate that drivers start adjusting their travel speeds upstream of the regulatory 
speed sign. This behavior probably starts as soon as drivers notice the sign. Such behavior is 
probably more pronounced on roadways with which the drivers are more familiar with and had 
experienced driving through.  

Unlike freeways, mean speeds were shown to be notably reduced across horizontal curves. An 
impact that was found to be more pronounced when no leading vehicle was present. Due to the 
substantial impact of horizontal alignment on travel speeds, this impact was investigated in 
greater detail in Section 6.0. As for driver age, younger and middle-aged drivers were found to 
be associated with higher travel speeds. However, such impacts were found to be less 
pronounced across transition areas as compared to areas with no limit change. This is reflective 
of stronger role of roadway condition rather than individuals’ behavior when selecting speeds 
across transition areas. These models were all found to provide significantly improved fit when 
considering different goodness-of-fit measures including AIC, BIC, and log-likelihood. 
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6.0 SPEED SELECTION ON HORIZONTAL CURVES 

The results presented previously demonstrate the significant impact of horizontal curvature on 
driver speed selection, especially on two-lane highways. Consequently, the third focus area of 
was to examine driver speed selection along horizontal curves on two-lane highways and 
evaluate the efficacy of advisory speed signs. Few studies have investigated the impact of 
advisory speed signs on mean speeds and drivers’ level of compliance with them in the past and 
have generally shown minimal or no impact associated with installation of such signs. Also, 
majority of these studies investigated the drivers’ compliance rate or the average speed changes 
across the curves and fail to account for changes in the speed profiles upstream and downstream 
of the curves. In addition, much of such studies date back to the 90’s or earlier (Ritchie 1972, 
Chowdhury et al. 1991, Bennett and Dunn 1994)which necessitates revisiting this issue. This 
section investigates the general drivers’ choice of speed on horizontal curves across two-lane 
highways and the impact of advisory speed signs on them.   

Advisory speeds are introduced at certain locations to inform drivers of a lower recommended 
speed in conditions where the safe speed is below the posted speed limit. Such locations include 
sharp curves, highway ramps and roundabouts, as well as locations where the sight distance is 
limited. According to the Manual on Uniform Traffic Control Devices (MUTCD), the difference 
between the mandatory speed limit and the advisory speed typically ranges from 5 to 25 mph 
(FHWA, 2009). Table 12 outlines the criteria developed in the 2009 edition of the MUTCD for 
installing advisory speed signs. This includes conditions where advisory speed signs are 
required, recommended, or optional. However, it is imperative to note that advisory speeds do 
not mandate the driver to follow the recommended speed (i.e. citation cannot be issued by law 
enforcements). Several studies showed that advisory speeds are generally too low compared to 
what drivers perceive as comfortable (Bennett and Dunn, 1994; Chowdhury et al., 1991).  

TABLE 12. MUTCD Criteria for Selection of Horizontal Alignment Sign (FHWA, 2009) 

Type of Horizontal  
Alignment Sign 

Difference Between Speed Limit and Advisory Speed 

5 mph 10 mph 15 mph 20 mph 25+ mph 

Turn (W1-1), Curve (W1-2), 
Reverse Turn (W1-3), Reverse 
Curve (W1-4), Winding Road 
(W1-5), and Combination 
Horizontal Alignment / 
Intersection (W10-1) 

Recommended Required Required Required Required 

Advisory Speed Plaque (W13-1P) Recommended Required Required Required Required 

Chevrons (W1-8) and/or One 
Direction Large Arrow (W1-6) 

Optional Recommended Required Required Required 

Exit Speed (W13-2) and Ramp 
Speed (W13-3) on exit ramp 

Optional Optional Recommended Required Required 

Note: Required means that the sign and/or plaque shall be used, recommended means that the sign and/or plaque should 
be used, and optional means that the sign and/or plaque may be used. 
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There are also inconsistencies in the installation of advisory speed signs between states, and even 
between locations within a single state (Ritchie, 1972). Consequently, the efficacy of such signs 
is still under question and requires further investigation. Examination of drivers’ behavior in 
response to such signs and how they adjust their speed considering the combination of regulatory 
and advisory speeds when negotiating horizontal curves can shed light on the actual effect of 
such signs and the levels of drivers’ compliance. 

Although speed limits and advisory speed signs provide drivers with clues as to what a 
reasonable travel speed on a roadway is, driver speed selection behavior has been shown to be 
more sophisticated and difficult to untangle as it is driven by a multitude of factors, speed limit 
being one of them (Hamzeie et al., 2017b). As a result, there continues to be a debate as to how 
drivers react to different posted speed limits, visual cues, and environmental conditions, and 
recent efforts have sought to quantify the relationship between posted speed limit, operating 
speed, and crash risk.  

The intent of all these efforts to regulate travel speed is to lower crash frequencies and the 
associated level of injuries while allowing drivers to travel at a reasonably high speed. However, 
travel speed is not the sole contributing factor to safety critical (i.e. crash/near-crash) events. 
Traffic crashes may occur due to a combination of factors including poor roadway design, 
adverse environmental conditions, or inappropriate driver behavior. Researchers have long been 
trying to examine crashes to identify the contributing factors, suggest potential solutions to 
eliminate them, or mitigate the consequences (Aarts and Van Schagen, 2006; Solomon, 1964; 
Cirillo, 1968; Munden, 1967). However, these efforts were mostly limited to examination of 
crashes as outcomes of geometric attributes and traffic conditions and lacked thorough 
investigation of the impacts that driver behavior and their characteristics have on the resulting 
incident. However, according to the National Motor Vehicle Crash Causation Survey 
(NMVCCS), human error is the critical reason for 93% of crashes where critical reason is 
perceived as the last event in the crash causal chain (NHTSA, 2008). Consequently, assessing 
driver behavior at time of safety critical events, as well as during normal driving events provide 
insights as to the factors that distinguish between such incidents. Identification of crash 
contributing factors including driver behavior and the associated characteristics, as well as the 
cross-sectional and geometric attributes will help to recommend appropriate countermeasures, 
improve existing design criteria, revise in-place legislations if necessary, and better target public 
education and outreach.   

Horizontal curves and roundabouts, as well as exit and entrance ramps are integral components 
of highway design. While these roadway elements have long drawn significant amount of 
attention from researchers, crash statistics show that such locations still experience a 
disproportionate number of severe crashes. As a result, various methods and techniques have 
been employed to warn drivers as to potential hazards associated with driving across such 
locations. One of such methods is to install curve warning signs with or without advisory speeds. 

Warning signs are generally installed to notify drivers with a change in alignment that may not 
be evident to the road user. Advisory speed signs often supplement warning signs to recommend 
drivers a lower speed with which the curve can be traversed comfortably. A comprehensive list 
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of such signs is presented in the Manual on Uniform Traffic Control Devices (MUTCD) and is 
shown in Figure 21.  

 

FIGURE 21  Horizontal Alignment Signs and Plaques Outlined in MUTCD (FHWA, 2009). 

According to the Federal Highway Administration (FHWA), curve advisory speeds can be 
determined using six different methods: (1) Direct Method (using field measurements of curve 
speeds), (2) Compass Method (through a single-pass survey technique using a digital compass), 
(3) Global Positioning System (GPS) Method (through a single-pass survey using a GPS and 
software to derive curve radius and deflection angle), (4) Design Method (using the curve radius 
and deflection angle from the as built plans), (5) Ball-Bank Indicator Method (record the ball-
bank indicator through a collection of field driving tests), and (6) Accelerometer Method (record 
the maximum lateral gravitational force using an electronic accelerometer device and a GPS 
receiver through a collection of field driving tests). While this list included most of methods that 
are currently being used by agencies to determine the advisory speeds, some other methods have 
previously been used to designate the advisory speed most important of which is the American 
Association of State Highway Officials (AASHTO)’s method which simply derive the advisory 
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speed using superelevation, side friction factor, and curve radius. Due to this variety in the 
methods and procedures to determine the advisory speeds, there is no consistency in determining 
advisory speed among different states, and even within a state at different locations. This has 
impacted the plausibility and effectiveness of such signs. Consequently, numerous studies tried 
to examine the influence of advisory speed signs on travel speed and how drivers adhere to such 
signs.  

In one of the earlier studies, 50 drivers drove through 162 curves which can be grouped into 
three different categories: (1) curves with no warning signs, (2) curves with warning signs, and 
(3) curves where advisory speed sign was installed in conjunction with warning signs. The 
advisory speeds ranged between 15 to 50 mph, and the state speed limit was 60 mph at the time 
of study. Lateral acceleration, as well as travel speed data were collected. Interestingly, Ritchie 
reported that drivers travel at higher speeds on curves where a warning sign was installed as 
compared to those with no sign, and such behavior was more pronounced when an advisory 
speed sign was present in addition to curve warning sign. The participants were found to drive at 
higher speeds compared to what was recommended by the sign with an exception for advisory 
speeds of 45 and 50 mph where the subjects’ speeds were roughly the same as the recommended 
speed which could be related to the posted speed limit of 60 mph at the time (Ritchie, 1972).  

A 1991 study examined speed data on 28 curves to investigate drivers’ compliance with in-place 
advisory speeds. The results showed the level of compliance to vary between different advisory 
speeds, with zero percent complying with advisory speeds of 15-20 mph, and only 43 percent 
adhering to the 45-50 mph advisory speeds. They also reported that the actual observed drop in 
vehicles’ speeds was less than half of what was suggested by the advisory speed sign, and is 
detailed in Table 13 (Chowdhury et al., 1991). 

TABLE 13. Observed Average Speed Reduction Reported (Chowdury et al., 1991) 

State 
Suggested Speed 
Drop (mph)  

Actual Speed 
Drop (mph) 

Virginia 15.8 4.6 
Maryland 18.7 10.4 
West Virginia 7.9 4.9 
All Curves 15.1 6.1 

 

Bennett and Dunn (1994) evaluated drivers’ speed selection behavior on 23 different curves in 
New Zealand and concluded that in only less than 39 percent of cases were the speeds below the 
design values. They further investigated those curves with advisory speeds in place and observed 
that the 85th percentile speeds were approximately 10-28 km/h (9 to 17 mph) greater than that of 
advisory speed sign.  

The effectiveness of advisory speeds was also examined using drivers’ eye scanning and fixation 
duration. Zwahlen (1987) concluded that advisory speeds do not have significant impact on 
reducing travel speeds under dry weather conditions when compared to curve warning signs. 
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However, it was noted that such signs may be of more beneficial impacts when considering 
heavy vehicles and motorcycles.  

In general, previous research has shown lack of efficacy when installing advisory speed signs. 
Most critiques have attributed this relative ineffectiveness to the inconsistencies in methods 
utilized to determine the advisory speeds. The majority of research conducted to evaluate the 
impact of advisory speeds have shown travel speeds to be higher than what was recommended 
by the sign. This could be hazardous when drivers, on the other hand, assume consistencies 
between locations. For example, a driver who travels through a curve on a daily basis may 
realize that he could still travel comfortably and safely at speeds beyond the advisory speed. 
Following such perception, he may assume for same settings when travelling through an 
unfamiliar curve with similar sign where the design speed is lower than that of previous location. 
As such, further research as to the impact of advisory speed signs on travel speed and safety, as 
well as investigating how same individuals react to different conditions is warranted.    

6.1 Data Summary 
A procedure similar to that of speed limit transition areas was followed to identify links 
associated with advisory speed signs. Using the various speed limit/advisory speed combinations 
from Table 12, a series of links associated with advisory speed signs were identified. 
Subsequently, these links and the identified signs were reviewed using the Google Earth add-in 
available in ArcMap to confirm that the select candidates are indeed curve advisory speed signs 
and do display the listed message. Also, like the previous dataset, the minimum 10 traces per link 
criterion was considered. Ultimately, a total of 135 links associated with curve advisory speed 
signs were identified. In addition, 29 links were identified corresponding to curves without 
advisory speed signs to be utilized as control segments. When selecting these links, curve radius 
and length, as well as posted speed limits were considered so that they match the ones in the 
other set to the extent possible. However, in most cases it was difficult to identify identical 
curves since if a collection of characteristics does satisfy the criteria for installation of curve 
advisory signs, it is somewhat unlikely to have them not being associated with an advisory sign. 
As with the speed limit transition areas, requested time-series data were extended for the 30 
seconds immediately before and after each link where a sign was located. Ultimately, a total of 
4,604 and 842 traces were obtained for curves with and without advisory speed signs, 
respectively. The frequency distribution of the obtained trips is provided in Table 14. The 
increase in the number of trips in this table compared to the previously mentioned values is the 
due to the fact that in a few cases extending the trips for 30 seconds upstream and downstream of 
the sign link resulted in capturing other advisory signs, and as a result the total number of trip 
segments used for analysis increased.   

One complication associated with preparation of this set of data related back to the point-based 
nature of the sign shapefiles. While regulatory speed limits were assumed consistent between 
consecutive signs, this assumption does not apply to advisory speed signs. Subsequently, a curve 
inventory dataset was created for the collection of curves for which the data were requested. For 
each location, information was collected as to the location of the curve beginning, referred to as 
point of curvature (PC), curve end, referred to as point on tangent (PT), and advisory speed sign. 
These segments were extended for 400 ft upstream of the sign to capture the patterns in travel 
speeds preceding to the sign, as well. Once this inventory was put together, these segments were 
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overlaid by the obtained time-series data using the ArcMap’s “Overlay Route Events” tool, 
described in Section 3.3, to integrate the obtained data with the curves and the associated 
characteristics.  

TABLE 14. Frequency Distribution of Obtained Trips by Posted Speed Limit and 
Suggested Speed Reduction 

Posted Speed Limit 
(mph) 

Suggested Speed Reduction (mph)   
0 5 10 15 20 25 Total 

30 191 278 220 5 - - 694 
35 50 693 250 114 211 23 1,341 
40 127 60 103 81 - - 371 
45 213 658 949 177 8 178 2,183 
50 65 14 48 60 22 - 209 
55 87 56 564 201 27 9 944 
Total 733 1759 2,134 638 268 210 5,742 

 
Like speed limit transition areas, time-series data were used with 10-Hz frequency where travel 
speed information was recorded with a resolution of 10th of a second. Similarly, the intermediate 
locations were interpolated using Equation 8 and Equation 9. This was done to capture the 
changes in drivers’ select speed both upstream and downstream of the curve.  

Figure 22 displays the boxplots of the baseline mean travel speeds by posted limit and advisory 
speed. Some slight differences are evident between the baseline speeds based on the size of 
upcoming advisory speed. These plots indicate that upstream speeds were decreased as the 
difference between posted speed limit and advisory speed increased. This finding indicates that 
drivers begin adjusting their speeds far upstream of the curve PC, especially when larger 
reductions are suggested.  
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FIGURE 22  Upstream Travel Speed by Posted Speed Limit and Advisory Speed. 

 
In addition, video data were obtained and reviewed by the research team following similar 
process outlined previously. Figure 23 presents a summary of the reduced video data. Nearly 45 
percent of the subject vehicles were found to be following a leading vehicle which may 
potentially impact travel speeds. Although the majority of trips occurred under clear weather 
condition, 8.5 percent of them were found to occur under rainy weather, whereas less than 1 
percent were associated with snowy weather condition.  

Next the integrated data were analyzed using two different methods. First, mixed effect linear 
regression models were estimated as described previously. In addition, time-series data were 
analyzed using Functional Data Analysis (FDA) methods at select locations to better investigate 
the patterns in drivers’ speed selection behavior. Following section describes the underlying 
theory of FDA and discusses the steps performed to evaluate the patterns in the functional data.  
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FIGURE 23  Overview of the Reduced Video Data for Curves. 

6.2 Statistical Methods 
In addition to investigation of driver behavior with respect to speed selection across speed limit 
transition areas and horizontal curves, a more in-depth analysis of behavioral data was conducted 
through employing Functional Data Analysis (FDA) methods for select locations. This study 
used the procedures for FDA as outlined by Ramsay and Silverman in the book ‘Functional Data 
Analysis’ (Ramsay, 2006). FDA is essentially employed by researchers (where possible) to 
demonstrate the existing data in a way that more prominent characteristics can be highlighted. 
Also, such analysis is broadly conducted to further examine the existing pattern and variations in 
the data, as well as to identify the sources resulting in such variations in the outcome or 
dependent variable. More importantly, what makes FDA a strong analysis candidate method is 
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its ability to compare the variation and patterns between two or more sets of data. Such datasets 
may be made of different replicates of same function, or different functions built from same 
replicates.  

In the context of FDA, functions are presented as linear combination of basis functions. Fourier 
and B-spline basis functions are broadly used for FDA purposes. Fourier basis functions are 
generally employed when some sort of periodicity and cyclic trends are present, whereas use of 
B-spline basis functions is suggested in absence of such repetitive patterns. The basic assumption 
of FDA is that the observed discrete data values are basically snapshots of an underlying smooth 
function at any given time (or other continuous domain). In addition, the underlying function is 
assumed to be smooth to some degree, meaning that certain number of derivatives are defined 
and computable. While smoothness of the assigned function is one of the fundamental 
assumptions of FDA, the discrete observed vector 𝑦 = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … , 𝑦௡) may not exhibit such 
property due to the presence of noise in the data, and is specified as:  

𝑦௝ = 𝑥൫𝑡௝൯ +  𝜀௝          (Eq. 8) 
 
where 𝑦௝ is the observed value at point j, 𝑥൫𝑡௝൯ is the assigned function evaluated at point 𝑡௝, and 
𝜀௝ is the error or disturbance term, normally distributed with mean zero and variance of  𝜎ଶ. As 
alluded to previously, functional data are generated through a weighted sum of K basis functions 
𝜑௞ as:  

𝑥(𝑡) =  ∑ 𝑐௞𝜑௞(𝑡)௄
௞ୀଵ           (Eq. 9)  

 
where 𝑐௞ is the kth element of the vector of coefficients denoting the weights, and 𝜑௞ is the kth 
basis function. For speed analysis purposes conducted as part of this study, B-spline basis 
functions were used as they best fit data that are open-ended and do not exhibit any periodic 
patterns. The roughness penalty, or regularization, approach was used to smooth the discrete 
functional data as it not only preserves the general properties of basis functions, but also 
generates better results particularly when considering derivatives.  

The objective of an FDA was to fit the discrete measures 𝑦௝  , 𝑗 = 1, 2, … , 𝑛 a function 𝑥(𝑡) such 
that it minimizes the residuals sum of squares. In a standard model, such measure is defined as:  

𝑆𝑀𝑆𝑆𝐸 (𝒚|𝑪) = ∑ [𝑦௝ − ∑ 𝑐௞𝜑௞ (𝑡௝)௄
௞ ]ଶ௡

௝ୀଵ = (𝒚 − 𝜱𝑐)ᇱ(𝒚 − 𝜱𝑐)            (Eq. 10) 
 
However, an underlying assumption for this standard model is that the residuals (𝜀௝′s) are 
independently and identically distributed (IID) with mean of zero and constant variance of σ2 

which is often violated with real world data. Consequently, to account for autocorrelated errors, 
Equation 10 is expanded to:  

𝑆𝑀𝑆𝑆𝐸 (𝒚|𝑪) = (𝒚 − 𝜱𝑐)𝑾ᇱ(𝒚 − 𝜱𝑐)                (Eq. 11) 
 
where W is the inverse variance-covariance matrix.  
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One other concern that arises when smoothing the functional data is the tradeoff between 
smoothness and bias. While the observed value of 𝑦௝ is an unbiased estimator for 𝑥൫𝑡௝൯, it may 
result in high variance curves which exhibit high frequency local fluctuations. As such, a new 
term is added to Equation 11 to penalize the sum of squared errors for excessive roughness, 
resulting in Equation 12:  

𝑃𝐸𝑁𝑆𝑆𝐸ఒ(𝑥|𝒚) = [𝒚 − 𝑥(𝒕)]ᇱ𝑾[𝒚 − 𝑥(𝒕)]ଶ + 𝜆 𝑃𝐸𝑁ଶ(𝑥)              (Eq. 12) 
 
where 𝜆 is a smoothing parameter, and PENଶ is a measure of roughness calculated based on the 
second derivative of the introduced function (defined across the entire range of values), and is 
defined as:  

𝑃𝐸𝑁ଶ(𝑥) = ∫[𝐷ଶ𝑥(𝑠)]ଶ𝑑𝑠                  (Eq. 13) 
 

By using the penalized sum of squared errors (PENSSE), the function goodness of fit, as well as 
its roughness are considered simultaneously to identify an appropriate smooth function. Larger 
values of 𝜆 results in marked penalty amounts for SSE, and in this way more emphasis must be 
given to function smoothness rather than goodness of fit. As such, when 𝜆 goes to infinity the 
smoothed function (𝑖. 𝑒. 𝑥(𝑡)) approaches the standard linear regression, whereas when  𝜆 goes to 
zero, there is nothing to penalize the SSE for, and as a result, 𝑥(𝑡) is just an interpolant to the 
data.  

The subsequent step was to identify an appropriate smoothing parameter that refrains excessive 
roughness while still capturing the noticeable properties of the underlying function. In this study, 
the generalized cross-validation (GCV) method (Golub, Heath and Wahba, 1979) was used to 
choose the tuning functions, with the following specification:  

𝐺𝐶𝑉(𝜆) = (
௡

௡ିௗ௙(ఒ)
)(

ௌௌா

௡ିௗ௙(ఒ)
)                 (Eq. 14) 

 

Once the smoothed functions were developed, the mean and confidence interval of groups of 
functional data, as well as the first derivatives were calculated to further investigate driver 
behavior in speed across various horizontal curves. The mean of functional data is simply the 
point-wise average of the generated functional data as:  

𝑥̅(𝑡) =
∑ ௫೔(௧)೙

భ

௡
                    (Eq. 15) 

 

Ultimately, given the variance-covariance matrix of the fitted functions as 𝑉𝑎𝑟(𝑦ො) =
𝚽𝐶 ∑ 𝐶்𝑄்,  the confidence interval of the group of time-series data can be computed as:  
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𝐶𝐼 =  𝑦ො(𝑡)  ± 𝑧ఈ
ଶൗ ඥ𝑉𝑎𝑟(𝑦ො(𝑡))                  (Eq. 16) 

  
In the context of this study, deriving the patterns in the first derivative of the speed profiles was 
also beneficial as they exhibit where drivers begin adjusting their acceleration. As a result, 
similar procedures were conducted to smooth and estimate the mean acceleration function at 
select locations. Following section, summarizes the findings from the regression analysis, as well 
as the outcomes of the FDA.  

6.3 Results and Discussion 
Initially, a series of mixed effect linear regression models was developed to examine drivers’ 
select speed on horizontal curves using the time-series data. Various analysis strategies were 
investigated to identify the most proper informative model. Table 15 presents the result of the 
model where segments were split into only two chunks upstream and downstream of the curve 
PC. Parameter estimates are provided for mean baseline speed at each speed limit, as well as the 
associated reduction in travel speeds downstream of the PC. The impact of advisory speed signs 
was investigated by considering the difference between the posted speed limit and the advisory 
speed sign’s message rather than the advisory message itself. Like previous analyses separate 
models were developed for the total sample, as well as a subset where no leading vehicle was 
present according to the forward video.  

No significant difference was observed between the mean speeds at 55- and 50-mph posted 
limits where the mean speed was shown to be nearly 49 mph. Likewise, mean speeds were 
comparable between 40- and 45-mph limits where less than 1 mph difference was observed. 
Also, mean speeds were estimated approximately 36.5 and 28 mph at 35- and 30-mph limits, 
respectively.    

Turning to the parameter of interest, interestingly, the associated reductions in travel speeds were 
found to be much lower than the suggested amount by the advisory speed sign. For example, 
speeds were reduced by 3.5 and 2.8 mph when reductions of 25 and 20 mph were introduced, 
respectively. The parameter estimates were found to be relatively similar between 20 and 15 mph 
reductions, as well as 10 and 5 mph reductions. These estimates are all relative to the curves 
where no advisory speeds were installed. Despite these comparably small estimates, it is 
essential to note that they were all found to be statistically significant at a 95-percent confidence 
interval.  

In addition to both regulatory and advisory speeds, a few other variables were shown to impact 
drivers’ select speed. Like past analyses, speeds were reduced where leading vehicles were 
present and under adverse weather condition. Travel speeds were reduced by approximately 1 
and 3.7 mph under rainy and snowy weather, respectively. Speeds were found to be considerably 
different between younger and older drivers, a finding that was consistent across various other 
analyses. 
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TABLE 15. Mixed Effect Linear Regression Model for Travel Speed across Horizontal 
Curves – No Distance Variable Included 

  Total Sample No Leading Vehicle Sample 
Random Effects:       
Groups Variance Std. Dev. Variance Std. Dev. 
Trip ID 20.340 4.509  13.230 3.637  
Participant ID 10.390 3.224  13.310 3.648  
Location ID 23.480 4.845  23.810 4.879  

Residual: 15.190 3.898  13.420 3.663  

Fixed Effects:  
  

Model Term  Coeff.  Std. Err. t-stat Coeff.  Std. Err. t-stat 
Intercept 48.977 0.663 73.872 48.675 0.673 72.347 
30-mph limit -21.178 1.187 -17.838 -21.615 1.215 -17.787 
35-mph limit -12.121 0.973 -12.457 -11.996 0.996 -12.048 
40-mph limit -5.991 1.156 -5.183 -6.343 1.196 -5.301 
45-mph limit -5.096 0.740 -6.887 -4.824 0.733 -6.585 
50-mph limit Baseline Baseline 
55-mph limit Baseline Baseline 
Advisory Sign Suggested Reduction      

No reduction (control) Baseline Baseline 
5-mph reduction -0.642 0.018 -36.482 -0.708 0.024 -29.422 
10-mph reduction -1.111 0.016 -71.248 -1.766 0.020 -87.314 
15-mph reduction -2.755 0.031 -89.846 -3.790 0.037 -102.230 
20-mph reduction -2.810 0.047 -60.137 -4.046 0.052 -78.237 
25-mph reduction -3.591 0.054 -66.860 -3.898 0.062 -62.777 
Degree of Curvature -0.133 0.001 -200.233 -0.103 0.001 -137.582 
No Leading Vehicle Baseline - 
Leading Vehicle Present -1.273 0.188 -6.773 - 
Clear weather Baseline Baseline 
Rain -1.079 0.345 -3.125 -1.040 0.427 -2.436 
Snow  -3.710 1.328 -2.795 -7.526 1.748 -4.306 
Age 16 to 24 1.714 0.278 6.160 2.199 0.351 6.271 
Age 25 to 59 1.319 0.277 4.762 1.795 0.344 5.221 
Age 60 or above Baseline Baseline 
Null Log-Likelihood -4018423   -2027043 
Log-Likelihood -2576071  -1298318 
Null AIC 8036875  4054113 
AIC 5152181  2596884 
Null BIC 8036851  4054091 
BIC 5152416   2596674 
Number of Observations: 922,481 Number of Observations: 475,413 
Number of Events: 3,938 Number of Events: 2,066 
Number of Participants: 1,760 Number of Participants: 1,118 
Number of Locations: 259 Number of Locations: 252 
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Moreover, degree of curvature was still found to play a significant role in drivers’ speed 
selection behavior. The associated parameter estimate was found to be lower than what was 
observed before which indicates that parts of such effect were captured by the variables 
introduced for advisory signs. However, the statistically significant impact of degree of curvature 
even in presence of those variables is reflective of considerable differences in the sharpness of 
curves with similar posted speed limit and advisory speed signs. These differences are furtherly 
discussed in the analysis of select location using FDA. 

When comparing the two models, the total sample and the subset with no leading vehicle, a few 
differences stand out. First, although the mean speeds were nearly the same upstream the curve 
PC at each speed limit, the reductions were more pronounced when no leading vehicle was 
present. However, the degree of curvature parameter estimate was marginally reduced. This 
indicates that when no leading vehicle was present, drivers tended to adjust their speeds more 
based on the visual cues (i.e. curve warning and curve advisory speed signs). On the other hand, 
when leading vehicles were present, drivers rather moved with the flow and adjusted their speeds 
according to the curve sharpness as they traversed it. The parameter estimates for drivers’ age 
and rainy weather condition remained relatively stable; however, the reductions in speeds were 
found to be more pronounced under snowy weather condition. This increased impact was partly 
because of the limited sample size available for trips under such condition.   

While the previous model did provide some general insights as to how drivers adjust their speeds 
when traveling across horizontal curves, it did not yield into any finding as to where drivers start 
altering their speeds upstream of the curves and how these alterations emerge as they traverse the 
curves. As a result, another model was developed with an aim to gain a better understanding as to 
these patterns. Table 16 displays the results of this effort where the speed profiles were 
approximated by including a series of variables for intermediate segments upstream and 
downstream of the curve PC. The trips were split into smaller segments depending on their 
relative distance to the curve PC and PT. The parameter estimates for baseline speeds, far 
upstream of the curve PC, were found to be similar to those presented previously in Table 15. 
However, the results of the new model indicated that speed alteration begins approximately 200 
ft upstream of the curve PC. In addition, it was shown that these changes do vary based on the 
magnitude of the suggested speed reduction. Consequently, separate variables were introduced 
for each individual suggested reduction. When looking at the general trends, drivers tended to 
reduce their speeds gradually as they approached the curve. This reduction continued as they 
entered the curve at higher reductions; however, drivers were found to start accelerating back to 
baseline speed within the curve where a 5-mph reduction was introduced. No marked changes 
were observed in the parameter estimates for other variables including drivers’ age and weather 
condition.  

Comparing the parameter estimates between the overall model and the subset under free flow 
yielded to similar findings discussed previously. For example, more pronounced reductions were 
found when no leading vehicle was present, whereas the impact of degree of curvature was 
lessened. The goodness-of-fit measures presented in Table 16 exhibit marginal improvements 
when compared to those of Table 15, which indicate that speed changes did occur gradually and 
not abruptly.  
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TABLE 16. Mixed Effect Linear Regression Model for Travel Speed across Horizontal 
Curves – Step Function 

  Total Sample No Leading Vehicle Sample 
Random Effects:       
Groups Variance Std. Dev. Variance Std. Dev. 
Trip ID 20.22 4.50  13.19 3.63  
Participant ID 10.40 3.23  13.20 3.63  
Location ID 23.24 4.82  23.37 4.83  

Residual: 15.01 3.87  13.22 3.64  

Fixed Effects:  
  

Model Term  Coeff.  Std. Err. t-stat Coeff.  Std. Err. t-stat 
Intercept 49.135 0.660 74.437 48.807 0.668 73.060 
30-mph limit -21.188 1.182 -17.928 -21.623 1.206 -17.933 
35-mph limit -12.058 0.969 -12.449 -11.952 0.988 -12.097 
40-mph limit -5.990 1.151 -5.203 -6.344 1.189 -5.336 
45-mph limit -5.108 0.736 -6.937 -4.850 0.727 -6.670 
50-mph limit Baseline Baseline 
55-mph limit Baseline Baseline 
5-mph suggested reduction      

100-200 ft upstream PC -0.331 0.033 -10.066 -0.148 0.045 -3.263 
0-100 ft upstream PC -1.064 0.030 -35.962 -0.646 0.041 -15.623 
0-30 percent through curve -1.064 0.025 -42.431 -0.785 0.035 -22.447 
30-60 percent through curve -0.947 0.025 -37.428 -1.020 0.035 -28.978 
60-90 percent through curve -0.300 0.026 -11.593 -0.548 0.036 -15.371 
10-mph suggested reduction      

100-200 ft upstream PC -0.116 0.027 -4.283 0.048 0.036 1.363 
0-100 ft upstream PC -0.601 0.025 -23.638 -0.665 0.033 -20.022 
Table 17. (Continued)       
0-30 percent through curve -0.440 0.022 -19.909 -1.003 0.029 -34.684 
30-60 percent through curve -1.204 0.023 -53.444 -1.720 0.029 -58.784 
60-90 percent through curve -1.213 0.023 -53.539 -1.796 0.029 -61.068 
15-mph suggested reduction      

100-200 ft upstream PC -1.113 0.049 -22.654 -1.326 0.059 -22.411 
0-100 ft upstream PC -3.577 0.047 -75.738 -4.427 0.056 -79.442 
0-30 percent through curve -3.094 0.045 -69.400 -4.248 0.054 -78.522 
30-60 percent through curve -3.655 0.046 -78.760 -4.963 0.056 -89.110 
60-90 percent through curve -2.854 0.048 -59.818 -4.002 0.058 -69.174 
20-mph suggested reduction      

100-200 ft upstream PC N/S N/S 
0-100 ft upstream PC -1.583 0.070 -22.529 -1.285 0.079 -16.233 
0-30 percent through curve -1.549 0.072 -21.526 -2.287 0.080 -28.626 
30-60 percent through curve -2.543 0.071 -35.838 -3.595 0.078 -46.118 
60-90 percent through curve -3.275 0.071 -46.231 -4.396 0.077 -57.112 
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25-mph suggested reduction      

100-200 ft upstream PC -2.297 0.097 -23.624 -1.657 0.115 -14.386 
0-100 ft upstream PC -6.269 0.089 -70.378 -6.414 0.103 -62.358 
0-30 percent through curve -3.525 0.078 -44.926 -3.923 0.091 -43.283 
30-60 percent through curve -3.507 0.079 -44.153 -4.152 0.092 -45.351 
60-90 percent through curve -3.597 0.075 -48.262 -3.600 0.086 -41.705 

Degree of Curvature 
-0.145 0.001 

-
223.690 -0.117 0.001 

-
158.810 

No Leading Vehicle Baseline - 
Leading Vehicle Present -1.277 0.188 -6.807 - 
Clear weather Baseline Baseline 
Rain -1.083 0.344 -3.146 -1.057 0.426 -2.481 
Snow  -3.756 1.324 -2.836 -7.514 1.744 -4.308 
Age 16 to 24 1.710 0.278 6.153 2.203 0.350 6.303 
Age 25 to 59 1.322 0.277 4.778 1.803 0.343 5.259 
Age 60 or above Baseline Baseline 

Null Log-Likelihood 
-
4018423 

  
-
2027043 

Log-Likelihood 
-
2570426 

 -
1294742 

Null AIC 8036875  4054113 
AIC 5140929  2589560 
Null BIC 8036851  4054091 
BIC 5141387   2589981 

Number of Observations: 922,481 
Number of Observations: 
475,413 

Number of Events: 3,938 Number of Events: 2,066 
Number of Participants: 1,760 Number of Participants: 1,118 
Number of Locations: 259 Number of Locations: 252 

 
Although this second model was able to marginally reduce the existing heterogeneity through 
estimation of a step function, it was not able to provide a smooth continuous replicate of the 
speed profiles. In addition, as indicated by the mixed-effect linear regression models presented 
before, the drivers’ select speeds did vary between different locations even when parameters like 
speed limit, advisory speed, and curve sharpness were controlled for. These limitations may be 
relaxed by deploying the FDA method. The FDA method provides an appropriate framework to 
compare the existing patterns and variations in groups of time-series data. Using this method, 
speed profiles were estimated as a linear combination of a series of B-spline basis functions to 
better examine the actual patterns in speed profiles when traversing horizontal curves. Here the 
results of the FDA analysis are presented for a subset of locations. These locations were selected 
with an aim to estimate the average driver behavior across a wide range of speed limits, advisory 
speeds, curves radius, and curves length.   

Starting with the minimum suggested reduction, speed profiles were approximated using the 
FDA method for a curve posted at 35 mph with an advisory speed sign of 30 mph. The curve’s 
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radius and curve length were 418 ft and 800 ft, respectively. First the speed profiles were 
examined visually. The drivers were shown to start reducing their speeds upstream of the sign 
with minimal deceleration as shown in Figure 24. This deceleration starts to increase as they 
approach the curve, especially when they were approximately 200 ft upstream of the curve PC. 
The absolute deceleration magnitude was highest at curve PC. Once drivers entered the curve, 
the reduction continued with milder rates. Ultimately, they started to accelerate back to the 
baseline speed after traversing approximately 25 percent of the curve.  

 

FIGURE 24  FDA Results for a Curve Posted at 35 mph and Advisory Sign of 30 mph. 

 
To quantify the visual patterns, travel speeds were evaluated at two points upstream of the curve 
including the baseline travel speed upstream of the sign and at advisory speed sign location, as 
well as the curve PC and eight equally distant points along the curve (100 ft steps). Next, paired 
two-sample t-test was conducted between the speeds of each two consecutive points to discern if 
the observed changes were statistically significant. These results did confirm the findings from 
the visual inspection and are presented in Table 17. The results indicate that though drivers 
started reducing their speeds as soon as seeing the sign, much of speed reductions occurred 
between the advisory sign and the curve PC (approximately 3 mph). This reduction continued for 
the first 100 ft of the curve where the speeds were lowest. Approximately, 200 ft through the 
curve drivers were shown to start increasing their speeds. All the pairwise comparisons were 
found to be statistically significant under a 95 percent confidence interval except for the speeds 
across the first and last 200 ft of the curve where they were shown to remain stable. The lowest 
mean speed evaluated across this curve was 32.5 mph indicating that drivers reduced their speeds 
by only half of what had been suggested by the advisory sign. 
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TABLE 17. Paired Two-Sample t-test Results for a Curve Posted at 35 mph and Advisory 
Sign of 30 mph 

Distance to Curve PC 
(ft) 

Mean Speed 
(mph) 

Mean Differences 
(mph) P-Value 

-800 36.997 - - 
-660 36.405 -0.592 <0.001 
0 33.285 -3.120 <0.001 
100 32.503 -0.782 <0.001 
200 32.494 -0.008 0.947 
300 32.974 0.480 <0.001 
400 33.715 0.741 <0.001 
500 34.557 0.842 <0.001 
600 35.289 0.732 <0.001 
700 35.690 0.401 0.003 
800 35.961 0.271 0.07 

 
 
A similar process was conducted to examine the speed profiles across other select locations. 
Figure 25 exhibits the results of the FDA for a curve posted at 45 mph and an advisory speed of 
35 mph. The curve had a radius of 582 ft and was 820 ft long. Figure 24 illustrates the result of 
the FDA for this curve. A total of 47 trips were used to approximate the average drivers’ select 
speed at this location. Similarly, speeds were shown to be reduced downstream of the sign. 
Unlike previous example, the reduction continued even downstream of the curve PC. Speeds 
were shown to be lowest approximately 200 ft past the curve PC and remained relatively 
consistent after. The results of the paired two-sample t-test conducted to compare the mean 
differences, presented in Table 18, indicate that drivers reduced their travel speeds by nearly 2.6 
mph between the point they first saw the advisory sign and the curve PC.  Additional reduction 
was observed over the first 200 ft (25 percent) of the curve and stayed stable until curve PT. 
Over the entire length of the curve, the minimum observed mean travel speed was approximately 
39.5 mph, nearly 5 mph over the advised speed which again demonstrates that speeds were 
reduced by only half of the difference between speed limit and the advisory speed.  
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FIGURE 25  FDA Results for a Curve Posted at 45 mph and Advisory Sign of 35 mph. 

TABLE 18. Paired Two-Sample t-test Results for a Curve Posted at 45 mph and Advisory 
Sign of 35 mph 

Distance to Curve PC 
(ft) 

Mean 
Speed(mph) 

Mean Differences 
(mph) 

P-
Value 

-850 43.64   

-610 44.52 0.88 <0.01 
0 41.93 -2.59 <0.01 
100 40.50 -1.44 <0.01 
200 39.88 -0.62 <0.01 
300 39.59 -0.28 0.06 
400 39.76 0.16 0.29 
500 39.92 0.16 0.33 
600 39.89 -0.03 0.78 
700 39.83 -0.06 0.68 
800 39.67 -0.16 0.37 

 
As for 15 mph advised reduction, speed profiles were examined across a curve with a posted 
limit of 55 mph and an advisory speed sign of 40 mph. The curve associated radius and length 
were 828 ft and 600 ft, respectively. As shown in Figure 26, functional data were smoothed for a 
total of 73 trips at this location. Despite the large difference between the posted speed limit and 
the advisory speed message, no significant reduction is evident when visually examining the 
mean speed profile, a finding implied by the acceleration profile, as well. To statistically confirm 
this, two sampled t-test was conducted, and its results are presented in Table 19.  
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The baseline mean speed, upstream of the sign is approximately 53 mph at posted limit of 55 
mph. The speeds were shown to be reduced by only 1.5 mph over 650 ft from the advisory sign 
location, and curve PC.  The minimal reduction in speeds continued for the first half of the curve 
resulting in an average speed of 50 mph which is 10 mph over the advised speed.  This minimal 
reduction may be attributed to the large curve radius and is reflective of inconsistencies in 
guidelines regarding advisory speed sign installation. Past literature has generally shown drivers’ 
sensitivity to curves to decrease as the curve radius increases where no significant alteration 
occurs across curves with radii around 1000 ft (Schurr et al., 2002; Wang et al., 2015). 

 

FIGURE 26  FDA Results for a Curve Posted at 55 mph and Advisory Sign of 40 mph. 

TABLE 19. Paired Two-Sample t-test Results for a Curve Posted at 55 mph and Advisory 
Sign of 40 mph 

Distance to Curve PC 
(ft) 

Mean 
Speed 

Mean 
Differences P-Value 

-1000 52.83   
-650 53.43 0.60 <0.001 
0 51.97 -1.45 <0.001 
100 51.34 -0.63 <0.001 
200 50.75 -0.59 <0.001 
300 50.43 -0.32 <0.001 
400 50.26 -0.17 0.055 
500 50.33 0.07 0.465 
600 50.77 0.44 <0.001 
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The last FDA conducted as part of this study corresponded to a curve with a 45-mph limit in 
place, and advised speed of 20 mph. The curve was associated with a radius of 555 ft and was 
410 ft long. The time-series data were obtained for a total of 28 trips along this curve. Figure 27 
presents the results of the FDA for these trips where a marked reduction in travel speeds is 
apparent. Drivers tended to sustain their initial travel speed beyond the sign and began to reduce 
their speeds approximately 200 ft upstream of the curve PC. Travel speeds continued to decrease 
with an average deceleration of 1.5 mph/s all the way to 100 ft downstream of the curve PC. 
Subsequently, drivers began to accelerate and reached a stable speed around curve midpoint.  

 

 

FIGURE 27  FDA Results for a Curve Posted at 45 mph and Advisory Sign of 20 mph. 

To quantify the visual findings, the mean speed function was evaluated at seven points ranging 
from 1000 ft upstream of the PC to curve PT as shown in Table 20. The baseline mean speed at 
this location was around 46 mph which is comparable to the posted speed limit. No speed 
reduction occurred upstream of the sign; however, drivers reduced their speeds by about 9 mph 
between the sign’s location and the curve PC. This reduction continued for 100 ft within the 
curves. After this point drivers started to increase their speeds. The notable finding here is a total 
reduction of 12 mph over nearly 1000 ft resulting in mean speed of 35 mph within the curve 
which is 10 mph over the advised speed. This again confirms the previous finding that the 
overall reduction in travel speeds is about half of the advised reduction.  

Comparing the results for these four examples indicated that drivers tended to adjust their speeds 
based on the associated sharpness of curves rather than the advised speed. For example, the radii 
for the second and the fourth curves are comparable (582 ft versus 555 ft). However, the advised 
speed for the first one was found to be 35 mph, whereas the second curve was associated with a 
20-mph advisory speed. Despite the 15-mph difference between the two advised speeds, drivers 
were found to negotiate the curve similarly with nearly same travel speed across the curve.   
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TABLE 20. Paired Two-Sample t-test Results for a Curve Posted at 45 mph and Advisory 
Sign of 20 mph 

Distance to Curve PC 
(ft) 

Mean Speed 
(mph) 

Mean Differences 
(mph) P-Value 

-1000 46.22 - - 
-650 45.80 -0.41 0.369 
0 36.83 -8.97 <0.001 
100 35.23 -1.60 <0.001 
200 36.75 1.52 <0.001 
300 36.97 0.23 0.47 
400 37.46 0.49 0.029 

 

In general, this section of the report provided some insights as to drivers’ speed selection when 
traversing horizontal curves. Drivers were shown to reduce their speeds based on curve radius 
and in presence of advisory speeds. However, the results indicated that the advisory speeds are 
generally too conservative considering roadway conditions and, generally, drivers tend to drive 
significantly above the recommended speed. 
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7.0 CRASH RISKS ON FREEWAYS AND TWO-LANE HIGHWAYS 

As detailed previously, one of the key benefits to the use of the SHRP2 NDS data is the inclusion 
of detailed data for crash, near-crash, and baseline events. Prior naturalistic driving studies have 
shown evidence as to importance of including such incidents as they can provide researchers 
with unique opportunities to investigate critical factors and behaviors pertaining to traffic safety 
(Dingus et al. 2006). The risk and prevalence of safety critical events including crash and near-
crash incidents may be examined in consideration of drivers’ behavior and attributes, 
environmental conditions, and roadway geometry. This can help to identify contributing factors 
and, subsequently, introduce solutions and potential countermeasures. Also, as the 
connected/autonomous vehicles (CAVs) become more popular among the public and receive 
greater attention from researchers, it becomes of a greater importance to know how human 
drivers generally behave at time of incidents to identify and plan appropriate strategies especially 
when mixture of conventional and CAVs are present on the road.  

This section of the report examines the precipitating factors preceding crash and near-crash 
events. A variety of factors including driver behaviors, roadway geometry, and environmental 
conditions were considered. While numerous previous studies have examined the relationship 
between speed selection and crash risk, this study is unique in the use of high-fidelity data from 
the naturalistic driving study as opposed to prior research that has generally relied on police 
crash reports.  

7.1 Data Summary 

This section of the study used the event data from the SHRP2 NDS described previously. Three 
types of events were initially requested for analysis including crash, near-crash, and baseline 
events. The VTTI provided definition of crash and near-crash incidents as follows:  

 Crash: "Any contact that the subject vehicle has with an object, either moving or fixed, at 
any speed in which kinetic energy is measurably transferred or dissipated is considered a 
crash. This also includes non-premeditated departures of the roadway where at least one tire 
leaves the paved or intended travel surface of the road, as well as instances where the subject 
vehicle strikes another vehicle, roadside barrier, pedestrian, cyclist, animal, or object on or 
off the roadway." (Hankey et al. 2016) 

 Near-Crash: "Any circumstance that requires a rapid evasive maneuver by the subject 
vehicle, or any other vehicle, pedestrian, cyclist, or animal, to avoid a crash is considered a 
near-crash. A rapid evasive maneuver is defined as steering, braking, accelerating, or any 
combination of control inputs." (Hankey et al. 2016) 

The time-series data provided by the VTTI did not include the geographic information for 
crashes due to confidentiality concerns. Consequently, it was not possible to extract the RID 
features for such events. Ultimately, the event data used in this study were comprised of only 
near-crash and baseline events. The summary statistics for the freeway and two-lane highway 
event datasets were presented previously in Table 2 and Table 3, respectively. Among freeway 
events, there were a total of 448 and 3,927 near-crash and baseline events, respectively. For two-
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lane highways there found to be 242 near-crash and 2,659 baseline events. A variety factors 
including driver behavior and roadway characteristics were examined to identify those factors 
influencing the likelihood of involvement in near-crash events.  

7.2 Statistical Methods 

In addition to analyzing driver speed selection, a companion objective in this study was to assess 
those factors affecting crash risk. To this end, logistic regression models were estimated to 
examine trends in crash/near-crash involvement among study participants on both freeways and 
two-lane highways. Logistic regression presents an appropriate modeling framework since the 
dependent variable is dichotomous in nature (involvement versus non-involvement in a crash or 
near-crash). As describes before, near-crash incidents were used as surrogates for crashes in this 
study. Under the logistic regression framework, the odds of a participant being involved in a 
near-crash is related to a linear function of predictor variables as shown in Equation 17: 

𝑙𝑜𝑔 ቀ
௣೔

ଵି௣೔
ቁ = 𝜷𝒊𝑿𝒊  +  𝜀௜                     (Eq. 17) 

 
where 𝑝௜  is the probability of participant i being involved in a crash or near-crash event, 𝜷𝒊 is a 
vector of estimable parameters, and 𝑿𝒊 indicates a vector of explanatory variables associated 
with the event outcome (e.g., driver, vehicle, roadway, and temporal characteristics), and 𝜀௜ is an 
error term which follows the logistic distribution. 

The logistic regression model assumes that the error terms (εi) are independently and identically 
distributed (IID), which is potentially problematic as there is expected to be potential correlation 
in the rate of crash/near-crash events among study participants, resulting in a violation of the IID 
assumption. This assumption can be relaxed by adding a participant-specific parameter vector 
that varies randomly across drivers, similar to the approach that was utilized in the speed models 
discussed previously. This vector allows the constant term to vary across participants, permitting 
the model to capture heterogeneity that is due to other unobserved factors.  Under this setting, the 
probability of crash or near-crash involvement is then: 

𝑝௜ = ∫
ா௑௉(ఉ௫೔ାఌ೔)

ଵାா௑௉(ఉ௫೔ାఌ೔)
 𝑓(𝛽|𝜑)𝑑𝛽                 (Eq. 18) 

 
where (β|φ) is the density function of β with φ referring to a vector of parameters of the density 
function (mean and variance), and all other terms as previously defined.  This model structure is 
commonly referred to as random effects (or random intercept) logistic regression model.  
Following section provides the results of the logistic regression models developed for SCE 
analysis on freeways and two-lane highways.  

7.3 Results and Discussion 
Mixed-effect logistic regression models were estimated to assess factors affecting near-crash 
involvement on freeways and two-lane highways.  Table 21 presents results of the analysis for 
freeway events, where positive coefficients indicate a variable is associated with a higher risk of 
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a near-crash while negative coefficients are indicative of conditions that are associated with 
lower risks.  

The results show that the risk of a crash or near-crash increased significantly with increases in 
the standard deviation of speeds over the course of each event.  The odds of a crash/near-crash 
increased by approximately 19.2 percent for a 1-mph increase in the standard deviation of speed 
during the 20-s interval. This finding is likely reflective of several factors, including greater 
variability in general driving speeds among crash/near-crash involved drivers, as well as the 
effects of other factors that may influence speeds but were not available in the analysis dataset 
such as the influence of other vehicles in the traffic stream. In any case, these results further 
demonstrate the importance of minimizing variability in travel speeds to reduce crash potential. 
Interestingly, mean speed and speed limit were not shown to impact crash risk directly. 
However, speed limit was shown to have an indirect effect through the standard deviation 
variable.  

TABLE 21. Random Effect Logistic Regression Model for Crash/Near-Crash Risk, 
Freeways 

Model Term  Coeff.  Std. Err. z-stat Pr(>|z|) Odds Ratio 
Intercept -4.599 0.231 -19.865 <0.001 - 
Speed std. dev. 0.176 0.024 7.39 <0.001 1.192 
LOS A Baseline - 
LOS B 1.418 0.156 9.074 <0.001 4.129 
LOS C 2.29 0.208 10.984 <0.001 9.875 
LOS D 3.24 0.272 11.921 <0.001 25.534 
LOS E/F 2.134 0.349 6.119 <0.001 8.449 
Non-junction Baseline - 
Junction 0.63 0.129 4.896 <0.001 1.878 
Non-work zone Baseline - 
Work zone 0.487 0.277 1.76 0.078 1.627 
Age 34 or less Baseline - 
Age 35 to 74 -0.349 0.158 -2.214 0.027 0.705 
Age 75 plus Baseline  

Null Log-Likelihood -1445  
  

 

Log-Likelihood -1162  
  

 

Null AIC 2892  
  

 

AIC 2345  
  

 

Null BIC 2898  
  

 

BIC 2408         
Number of Observations: 4,375  

 

Number of Participants: 1,975  
 

 

Turning to the other factors of interest, crash risks were highest under heavy congestion (LOS D) 
and particularly within work zone environments. The results indicate that presence of a work 
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zone increase the likelihood of involvement in a near-crash by approximately 63 percent. 
Likewise, near-crashes were found to be more like at junctions (i.e. interchanges) where the 
probability of involvement in such incidents was increased by 88 percent. Conversely, such risks 
were lower among drivers aged 35 to 74.  

Table 22 provides the results of the similar analysis conducted using the two-lane highways 
event data. Crash/near-crash risk was found to be highest under moderate congestion, peaking 
under LOS C. This may be reflective of the fact that speeds generally decrease in a linear fashion 
as volumes increase on two-lane highways. Consequently, as traffic conditions approach 
capacity, speeds are significantly lower. This provides an explanation as to why crash risks were 
not significantly different between free-flow conditions (LOS A) and LOS D through F. 

TABLE 22. Random Effects Logistic Regression Model for Crash/Near-Crash Risk, Two-
Lane Highways 

Model Term  Coeff.  Std. Err. z-stat Pr(>|z|) Odds Ratio 

Intercept -8.967 0.492 
-
18.231 

<0.001 
- 

Speed std. dev. 0.145 0.04 3.574 <0.001 1.156 
LOS A Baseline - 
LOS B 1.703 0.292 5.836 <0.001 5.490 
LOS C 2.574 0.727 3.542 <0.001 13.118 
LOS D/E/F Baseline - 
No access points Baseline - 
Intersection Baseline - 
On-street parking -1.67 0.574 -2.909 0.003 0.188 
Driveway -0.809 0.428 -1.892 0.058 0.445 
Null Log-Likelihood -833  

   
Log-Likelihood -728  

   
Null AIC 1667  

   
AIC 1470  

   
Null BIC 1673  

   
BIC 1512         
Number of Observations: 2,901   
Number of Participants: 1,593   

 
Interestingly, crash risks were lower where on-street parking or driveways were present, but 
higher at intersections and on segments with no access points. Parking may serve as a proxy for 
the level of development, so this finding may also be an indication of lower speeds due to 
increased congestion and activity levels in more urban environments. In contrast, segments that 
included intersections showed higher risk, which is likely reflective of increases in the number of 
traffic conflicts present, as well as negative impacts of the intersections on operations along the 
upstream segment. Surprisingly, segments with no access points also showed higher crash risk in 
general. In this case, it is important to note that access density is lower on higher functional class 
roads. Consequently, this finding could relate to other characteristics of higher class roads. 
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Like freeways, mean speeds and speed limits were not shown to be directly correlated with 
crash/near-crash involvement. However, speed standard deviation over the duration of trips was 
found to have a significant impact on the likelihood of near-crash occurrence. The probability of 
involving in a near-crash was shown to increase by nearly 16 percent for each 1-mph increase in 
the speed standard deviation. This impact is marginally lower than what was observed with 
freeways which is probably related to the lower speed limits on two-lane highways.  

The analyses presented in this section of the report identified various factors that significantly 
impact the likelihood of near-crash involvement. The results demonstrated the importance of 
speeds variability in traffic safety and how fluctuations in travel speed can result in occurrence of 
safety critical events. Likewise, near-crash involvement was shown to be directly influenced by 
the level of congestion. Near-crashes were more likely under moderate to severe congestion, as 
well as in presence of junctions and intersections. 
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8.0 PREVALENCE AND IMPACTS OF DISTRACTED DRIVING 

In 2015, at least 10 percent of fatal crashes, 15 percent of injury crashes, and 14 percent of all 
vehicular crashes were influenced by distracted driving (NHTSA, 2017). This resulted in more 
than 3,400 fatalities and an additional 391,000 injuries. Although distracted driving is commonly 
associated with the use of technologies such as cell phones, a variety of other distractions occur 
both inside and outside of the vehicle, including eating, conversing with passengers, and 
operating in-vehicle dashboard utilities (e.g., radio and navigation systems). These sources of 
distraction pose a significant public health risk across the United States.  

Because distracted driving has been identified as a major threat to traffic safety, hundreds of 
research studies have been conducted to better understand the nature of those factors associated 
with driver inattention. The sources of distraction as well as various driver performance 
measures were categorized from 342 individual studies over 50 years. Ultimately, 81 percent of 
the analyses indicated that driver distractions degraded performance, while 16 percent noted no 
significant effect on performance parameters. (Atchley et al., 2016).  

One of the primary contemporary concerns in this area is cell phone use by drivers. Although 
many states have legislation in place that prohibits cell phone usage while operating a motor 
vehicle, a study from NHTSA noted that 18 percent of all drivers have sent text messages or 
emails while driving under these regulations (Tison et al., 2011). Of those surveyed, more than 
half believed that using a cell phone while driving did not affect their individual driving 
performance, but when considering the same scenario as a passenger (i.e. riding as a passenger 
with a driver using their cell phone), 90 percent of the respondents noted they would feel “very 
unsafe” if a driver was using a handheld electronic device while driving. This overestimation of 
personal driving abilities and underestimating of distracted driving consequences generates an 
unsafe social norm, as 33 percent of young drivers (aged 18 to 24) believe that they can divert 
their attention from the roadway for 3 to 10 seconds before a secondary task becomes 
significantly dangerous.  

Research by Prat et al. (2016) showed that, although drivers were aware of a ban on all cell 
phone-based activities, almost 44 percent admitted to texting while driving. Additionally, 32 
percent admitted to talking on their device while driving. Engelberg et al. (2015) found that more 
than 65 percent of adults reported texting while driving and, additionally, almost 25 percent of 
their time while driving on the freeway was spent using a cell phone for various tasks. Another 
national survey of drivers showed that almost 60 percent reported texting on a cell phone within 
the past 30 days of taking the survey (Gliklich et al., 2016). Reading text messages (48 percent), 
viewing GPS navigation (43 percent), and writing text messag.es (33 percent) were the most 
frequent types of distraction. More frequent engagement in distracting behaviors was also found 
to be correlated with greater likelihood of crash involvement by the drivers.  

Several studies have demonstrated that motorists consciously or subconsciously use 
compensatory behavior when engaging in a distracting behavior while driving to indirectly 
reduce their crash risk (Young and Regan, 2007). Some of these self-regulating behaviors 
include an intentional reduction in travel speed, an artificial increase in the lateral space between 
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their car and the car in front of them, or knowingly shifting their attention between the primary 
driving task and a secondary distracting task rapidly in hopes that the brief moments of 
inattention will be insignificant in relation to their overall driving experience. 

Vieira and Larocca (2016) analyzed driver performance under distraction in a driving simulator 
environment. A variety of secondary tasks were performed by the participants and compared to 
baseline tests with no distraction present. Distracted drivers performed worse than non-distracted 
drivers; distracted individuals did not recognize the beginning of a curve from the same distance 
as they did when they were not distracted. Also, the speed at which the subjects traversed curves 
was much greater while engaging in the secondary tasks. 

The preceding discussion illustrates the critical need for additional research into distracted 
driving. To this end, this chapter details a series assessments of driver distraction using 
observational, time-series collected as a part of the SHRP 2 NDS. This was done by leveraging 
the detailed information available from the NDS and the associated RID. Ultimately, three 
specific research questions were addressed through the resultant analyses: 

 How did driver distraction affect the crash risk of motorists? 
 What type of risk-taking behaviors and human characteristics made drivers more likely to 

engage in distracted driving activities? 
 Under what roadway conditions were motorists more likely to engage in distracted driving 

activities? 

8.1 Data Summary 

All the data utilized in this analysis were obtained as a part of the SHRP2 Implementation 
Assistance Program (IAP). A NDS has two main advantages over traditional crash-based or 
operational-based analyses: (1) meticulously detailed and reviewable pre-crash information 
regarding the participant driver’s behavior an instant before a crash occurs and (2) exposure 
information collected at a disaggregate level that measures the frequency and likelihood of 
driving behaviors and additional context of the contributing factors leading to a crash. 
Ultimately, the disaggregate nature of the NDS data allows for the analysis of human behavior 
while driving and the risk-taking tendencies of motorists, which was previously difficult to 
obtain using traditional data collection methods. 

Driver behavioral information is critical when attempting to understand crash causal factors. 
Traditional methods of analysis relied on police-reported crash data, which is typically collected 
by an investigating officer who considered the accounts of those involved in the crash, witnesses 
to the crash, and the evidence available through property damage to the vehicle(s) in question, 
among additional considerations (i.e. tire markings, weather conditions, animal presence, etc.). 
These after-the-crash investigations cannot accurately determine behavior before an accident 
because only aggregate information is available at the time of crash documentation, as well as 
the personal information provided by the vehicle occupants. Because of this, there is an inherent 
bias when using after-the-crash data as motorists would be less likely to report inappropriate 
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behavior while driving, as additional charges may be associated with a crash caused due to poor 
operator behavior. Using NDS data, the detailed behavior of motorists was documented and 
confirmed in the instants immediately before a crash occurred. Driver impairment due to 
distraction, inattention, drowsiness, lack of judgement, or any additional human behavior 
characteristics was captured within the NDS framework and can be utilized in an analysis to 
determine future crash risk based on these disaggregate driver characteristics alone. Tracking of 
obvious changes in behavior, such as the utilization of a cell phone or eating while operating, 
was conducted by analyzing the internal video camera imagery after the data collection had 
completed (Campbell, 2012). 

The roadway information collected by the van included: 

 Number of lanes 
 Lane type and width 
 Grade 
 Superelevation 
 Beginning and ending points of horizontal curves 
 Curve radius 
 Paved shoulder presence and width 
 Speed limit information and signage location 
 Intersection locations and number of approaches 
 Traffic control device locations 

Based on the available disaggregate human behavior data, the accompanying risk-taking 
characteristics from the required personal assessment tests, and the roadway geometrics collected 
from the participant traveled routes, the SHRP2 program NDS supports a comprehensive 
assessment of how driver performance is impacted by within-vehicle behavior, motorist 
attributes, and roadway characteristics. The primary benefit of this extensive data repository is 
the ability to determine those behaviors, characteristics, and geometrics with directly impact the 
driving performance of the motorist.  

For the purposes of these analyses, time-series data were collected from all the freeway trip 
events completed by the solicited participants throughout the four-year NDS data collection 
period. The time-series data was sampled at a rate of 10 Hz by the onboard DAS installed on 
participants’ vehicles. 

The time-series freeway trip event data was provided in 30-s intervals for crash and near-crash 
events, meaning that 300 observations were available for each freeway trip event that involved 
any type of crash or near-crash (since a measurement was taken by the DAS every decisecond), 
while 21-second intervals (i.e. 210 observations) were provided for non-crash events. 
Additionally, the provided non-crash (i.e. control) events were randomly sampled freeway trip 
events that did not involve any type of crash. Each freeway trip event was given a unique 
identification number so proper data migration could occur when considering the information 
observed from the onboard DAS, the results of the personal assessment tests, and the RID. 
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In this study, the effect of driver distraction on crash risk was analyzed. Additionally, the 
characteristics of drivers who were more likely to become distracted were considered in a 
separate analysis. Lastly, the effects of roadway parameters, such as characteristics and 
geometrics, were analyzed to determine their impact on the likelihood of driver distraction. To 
complete this analysis, the data were merged and analyzed based on the unique freeway trip 
event identifier previously mentioned to ensure accuracy among the three various data sources. 
All the video data for the NDS was analyzed and aggregated by VTTI. This included the review, 
analysis, and coding of the following human behavior aspects: the presence of distractions that 
occurred during the participant’s freeway trip events, the time during which the participant was 
engaged and not engaged in such behavior, the answers to the personal assessment tests, and 
many other behavioral variables. This information was provided by VTTI to ensure that 
participant anonymity was maintained. Quality control procedures were also performed to ensure 
that the final dataset was accurate before the information was available to researchers. 

Indicators were provided by VTTI to determine if the driver engaged in a distracting event 
during the freeway trip event. If a distraction occurred, the type of distraction was coded in the 
provided dataset, as was the time duration of the distraction. During the freeway trip event 
interval, each tenth of a second was given a corresponding identification value. Using both the 
unique freeway trip event indicator and the corresponding identification value of time, the 
interval during which the distraction event occurred was identified for further analysis purposes. 
After removing observations with missing data or data that could not be interpreted, the analysis 
datasets contained 497 participants who engaged in distracting behavior during their freeway trip 
events and 530 participants who did not engage in any distractions during their freeway trip 
events. This led to 20,571 observations in the distracted dataset, and 21,144 observations in the 
non-distracted dataset. 

As mentioned previously, the front facing camera imagery was analyzed by VTTI researchers on 
a secure network to determine the exact timing of both crash and near-crash events. A crash 
event was denoted as any contact that a subject vehicle had with any object, whether fixed or 
moving (Hankey et al., 2016). This also included any non-premediated departures from the 
roadway. A near-crash event was any situation which required an evasive maneuver by the 
subject vehicle to avoid a crash (Hankey et al., 2016). Due to the similarity in the actions 
required by the motorist for these event types, both crash events and near-crash events were 
combined in the distracted and non-distracted datasets. Freeway trip events without a crash or 
near-crash event were classified as a non-crash (i.e. control) event for analysis comparison. 

Besides the freeway trip event data that was collected, various demographic characteristics were 
obtained from the NDS participants through a series of surveys and interview questionnaires as 
mentioned previously. Before officially enrolling in the NDS, each of the participants completed 
a series of detailed personal assessment tests that collected various demographic information as 
well as tendencies and risk-taking behaviors, among other variables of interest. The participants 
answered a series of questions focused on their driving habits, how they performed under 
stressful situations, and measured their risk-taking likelihoods. The survey also documented any 
health impacts and medications or physical restrictions that may impair the participants from 
successfully enrolling in the NDS. This information was also integrated into the distracted and 
non-distracted datasets for each of the participants. 
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The RID, which contained aggregate information about the roadways traveled by the participants 
in all six states, provided variables related to alignment (i.e. tangent or curved surface), the 
number of lanes, lane width, and both left and right shoulder widths that were present during the 
freeway trip events. Ultimately, this information was matched with the freeway trip events for 
both the distracted and the non-distracted datasets. This information was included in the resultant 
analysis to determine the effects that roadway geometries and characteristics had on the 
likelihood of a driver to become distracted while operating a motor vehicle. Following the 
integration of the RID variables into both the distracted and non-distracted datasets, the two 
separate files were merged together with distraction-based binary indicators to create the dataset 
utilized for analysis. 

The descriptive statistics of all of the variables utilized in the subsequent analyses are provided 
in Table 23, Table 24, Table 25, and Table 26. These tables contain the minimum, maximum, 
mean, and standard deviation of the time-series data, RID geometrics, driver characteristics, and 
driver behavioral survey results, respectively. Note that various parameters were represented 
using binary indictors. These variables had a zero if the parameter was not present during that 
time, and a one if the parameter was present during that time. 

The descriptive statistics for the driver-selected speed is included in Table 23. The measured 
travel speed of the driver was included in the time-series information, as well as the posted speed 
limit of the roadway. A binary indicator was included to represent the occurrence of a crash 
event. The “distraction event” variable was a summation of the disaggregate distraction 
categories in Table 23 and identified when any type of distraction occurred during a freeway trip 
event. The “distraction time” characteristic noted the exact moments during the freeway trip 
event that a distraction occurred, if present. 

TABLE 23. Descriptive Statistics of Time-Series Data 

Variable Mean St. Dev. 
Driver selected speed (mph) 51.828 18.085 
Speed limit (mph) 55.456 9.328 
Baseline event (0/1) 0.838 0.368 
Crash or near-crash event (0/1) 0.162 0.368 
Driver not distracted (0/1)  0.507 0.500 
Instrument panel-related distraction (0/1) 0.022 0.146 
Hygiene-related distraction (0/1) 0.025 0.155 
Appearance-related distraction (0/1) 0.003 0.057 
Cell phone-related distraction (0/1) 0.092 0.290 
Passenger-related distraction (0/1) 0.128 0.334 
Consumption-related distraction (0/1) 0.027 0.163 
Smoking-related distraction (0/1) 0.010 0.102 
External distraction (0/1) 0.052 0.223 
Internal distraction (0/1) 0.049 0.216 
Activity-related distraction (0/1) 0.084 0.278 
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Table 24 contains a summation of the RID geometrics, weather conditions, and traffic condition 
variables that were utilized in the analysis dataset. The “tangent lane type” and “curve lane type” 
variables were binary indicators that assumed a value of one when the horizontal alignment of 
interest was present (i.e. denoting when the freeway segment was tangent or curved). Note that a 
tangent segment is a roadway segment with a curve radius of 0°. The roadway geometrics of 
interest, including lane width, number of lanes, left shoulder width, and right shoulder width, 
were included at their per-second observation rate as well as averages over the duration of the 
freeway trip event. The “degree of curvature” variable was measured in degrees and had a value 
of zero along tangent segments. The “vertical grade” parameter was the collected percent grade 
from the data collection van. Lastly, the included weather and LOS parameters were binary 
indicators that were one when present during the freeway trip event and zero otherwise. 

TABLE 24. Descriptive Statistics of RID Geometrics, Weather Conditions, and Traffic 
Congestion 

Variable Mean St. Dev. 
Tangent lane type (0/1) 0.686 0.464 
Curve lane type (0/1) 0.314 0.464 
Lane width (ft.) 11.811 2.618 
Number of lanes 2.851 0.983 
Left shoulder width (ft.) 4.609 3.537 
Right shoulder width (ft.) 7.089 4.290 
Degree of curvature (deg.) 0.676 1.936 
Vertical grade (%) 0.021 1.721 
Clear weather (0/1) 0.898 0.302 
Light rain weather (0/1) 0.035 0.184 
Rainy weather (0/1) 0.054 0.226 
Foggy weather (0/1) 0.009 0.093 
Rainy/foggy weather (0/1) 0.002 0.047 
Snowy weather (0/1) 0.002 0.039 
Level-of-service A (0/1) 0.460 0.498 
Level-of-service B (0/1) 0.372 0.483 
Level-of-service C (0/1) 0.097 0.296 
Level-of-service D (0/1) 0.045 0.207 
Level-of-service E (0/1) 0.022 0.148 
Level-of-service F (0/1) 0.004 0.061 

 

The descriptive statistics in Table 25 are all binary indicators that describe the various 
socioeconomic characteristics of the SHRP2 participants that were included in this analysis. As 
previous, the count value for each variable was the summation of the per-second observations 
within the time-series dataset. There was slightly more females than males and the age 
distribution of the operators was skewed towards the younger age categories. Most drivers had a 
collegiate education and a median annual income value.  
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TABLE 25. Descriptive Statistics of Driver Characteristics 

Variable Mean St. Dev. 
Female drivers (0/1) 0.521 0.500 
Male drivers (0/1) 0.479 0.500 
Driver age 16-19 (0/1) 0.041 0.198 
Driver age 20-24 (0/1) 0.212 0.409 
Driver age 25-29 (0/1) 0.133 0.340 
Driver age 30-34 (0/1) 0.101 0.301 
Driver age 35-39 (0/1) 0.054 0.225 
Driver age 40-44 (0/1) 0.058 0.234 
Driver age 45-49 (0/1) 0.067 0.250 
Driver age 50-54 (0/1) 0.070 0.256 
Driver age 55-59 (0/1) 0.075 0.263 
Driver age 60-64 (0/1) 0.045 0.208 
Driver age 65-69 (0/1) 0.059 0.235 
Driver age 70-74 (0/1) 0.047 0.211 
Driver age 75-89 (0/1) 0.039 0.195 
Some high school education (0/1) 0.010 0.101 
High school diploma (0/1) 0.068 0.251 
Some education beyond high school (0/1) 0.239 0.427 
College degree (0/1) 0.332 0.471 
Some graduate school education (0/1) 0.116 0.320 
Advanced degree (0/1) 0.235 0.424 
Annual income under $29,000 (0/1) 0.116 0.320 
Annual income between $30,000 and $39,999 (0/1) 0.094 0.292 
Annual income between $40,000 and $49,999 (0/1) 0.101 0.302 
Annual income between $50,000 and $69,999 (0/1) 0.194 0.396 
Annual income between $70,000 and $99,999 (0/1) 0.188 0.390 
Annual income between $100,000 and $149,999 (0/1) 0.208 0.406 
Annual income more than $150,000 (0/1) 0.099 0.299 
Average annual mileage less than 5,000 miles (0/1) 0.041 0.198 
Average annual mileage between 5,000 and 10,000 miles (0/1) 0.180 0.384 
Average annual mileage between 10,000 and 15,000 miles (0/1) 0.368 0.482 
Average annual mileage between 15,000 and 20,000 miles (0/1) 0.174 0.379 
Average annual mileage between 20,000 and 25,000 miles (0/1) 0.091 0.287 
Average annual mileage between 25,000 and 30,000 miles (0/1) 0.069 0.253 
Average annual mileage more than 30,000 miles (0/1) 0.077 0.267 
Zero violations within the last twelve months (0/1) 0.648 0.478 
One violation within the last twelve months (0/1) 0.249 0.433 
Two or more violations within the last twelve months (0/1) 0.103 0.303 
Zero crashes within the last twelve months (0/1) 0.718 0.450 
One crash within the last twelve months (0/1) 0.226 0.418 
Two or more crashes within the last twelve months (0/1) 0.057 0.231 
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The mileage variables represented the average annual mileage indicated by the driver before 
enrolling in the study. The average annual mileage category with the greatest frequency of 
observations was between 10,000 and 15,000. Lastly, the violation and crash parameters were a 
portion of the driver behavioral study in which the participant identified the number of violations 
and crashes they were involved in over the last twelve months before enrolling in the NDS. More 
than one-third (35 percent) of the operators had at least one ticketed violation, while 28 percent 
were involved in at least one crash. 

The descriptive statistics for all of the included driver behavioral survey results are in Table 26. 
Note that these were also all binary indicators, similar to the characteristics included in Table 24. 
The parameters in Table 26 were the output of the written behavioral survey completed by all 
SHRP2 participants before enrolling in the program. For this portion of the survey, the 
participants were required to estimate how often they personally performed the behavior of 
interest. The options for each question were “never”, “rarely”, “sometimes”, or “often”. For this 
analysis, the operators who selected “never” or “rarely” were considered as non-risky motorists, 
as they had a lower frequency of poor roadway behavior in their past driving experiences. 
Conversely, operators who selected “sometimes” and “often” for the behaviors in question were 
considered as risky motorists, as they frequently exhibited poor roadway behavior in their past 
driving experiences. 

The first four characteristics in Table 26 note a personal reflection on the driving abilities of the 
motorist. For this question, the driver rated their personal driving abilities compared to what they 
considered as the average driver. The remaining parameters followed the format described 
previously; the options for the frequency of engagement in each poor roadway behavior were 
“never”, “rarely”, “sometimes”, or “often”. The run red signals variables determined how 
frequently the operator ran red signals at intersections in their past driving experiences. The 
speed for fun characteristic determined the frequency the driver sped while driving for fun, while 
the tailgate, race drivers at green signals, accelerate at yellow signals, and road rage variables all 
measured the aggressiveness of the participant based on their prior driving experiences. The 
secondary task variable measured how often the operator admitted to performing a distracting 
activity while driving previously, while the race other driver’s variable measured how frequently 
the motorist raced other drivers in the past. The two speeding parameters in Table 26 detail how 
often the participant traveled ten to twenty mph over the speed limit and how often they traveled 
more than twenty mph over the speed limit. Lastly, the seatbelt usage characteristic estimated the 
frequency of seatbelt non-usage while driving. 
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TABLE 26. Descriptive Statistics of Driver Behavioral Survey Results 

Variable Mean St. Dev. 
Driving abilities somewhat worse than the average driver (0/1) 0.061 0.239 
Driving abilities about the same as the average driver (0/1) 0.306 0.461 
Driving abilities somewhat better than the average driver (0/1) 0.447 0.497 
Driving abilities much better than the average driver (0/1) 0.186 0.389 
Never run red signals (0/1) 0.589 0.492 
Rarely run red signals (0/1) 0.386 0.487 
Sometimes run red signals (0/1) 0.023 0.151 
Often run red signals (0/1) 0.001 0.035 
Never speed for fun (0/1) 0.813 0.390 
Rarely speed for fun (0/1) 0.151 0.358 
Sometimes speed for fun (0/1) 0.032 0.175 
Often speed for fun (0/1) 0.004 0.065 
Never tailgate (0/1) 0.500 0.500 
Rarely tailgate (0/1) 0.385 0.487 
Sometimes tailgate (0/1) 0.103 0.304 
Often tailgate (0/1) 0.013 0.112 
Never race drivers at green signal (0/1) 0.444 0.497 
Rarely race drivers at green signal (0/1) 0.334 0.472 
Sometimes race drivers at green signal (0/1) 0.184 0.387 
Often race drivers at green signal (0/1) 0.038 0.192 
Never accelerate at yellow signal (0/1) 0.151 0.358 
Rarely accelerate at yellow signal (0/1) 0.509 0.500 
Sometimes accelerate at yellow signal (0/1) 0.307 0.461 
Often accelerate at yellow signal (0/1) 0.033 0.179 
Never road rage (0/1) 0.522 0.500 
Rarely road rage (0/1) 0.318 0.466 
Sometimes road rage (0/1) 0.149 0.356 
Often road rage (0/1) 0.012 0.107 
Never perform secondary tasks (0/1) 0.092 0.289 
Rarely perform secondary tasks (0/1) 0.316 0.465 
Sometimes perform secondary tasks (0/1) 0.372 0.483 
Often perform secondary tasks (0/1) 0.220 0.414 
Never drive ten to twenty mph over the speed limit (0/1) 0.210 0.408 
Rarely drive ten to twenty mph over the speed limit (0/1) 0.469 0.499 
Sometimes drive ten to twenty mph over the speed limit (0/1) 0.225 0.418 
Often drive ten to twenty mph over the speed limit (0/1) 0.095 0.294 
Never drive more than twenty mph over the speed limit (0/1) 0.753 0.431 
Rarely drive more than twenty mph over the speed limit (0/1) 0.206 0.404 
Sometimes drive more than twenty mph over the speed limit (0/1) 0.037 0.188 
Often drive more than twenty mph over the speed limit (0/1) 0.004 0.065 
Never drive without wearing a seatbelt (0/1) 0.900 0.300 
Rarely drive without wearing a seatbelt (0/1) 0.077 0.266 
Sometimes drive without wearing a seatbelt (0/1) 0.015 0.123 
Often drive without wearing a seatbelt (0/1) 0.008 0.089 
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8.2 Statistical Methods 

Based on the aggregate findings from the state-of-the-art literature review, the crash risk of 
motorists was likely to increase when engaged in a secondary task. There may also be some 
roadway features that are more conducive to distracted driving opportunities and increase the 
likelihood of a driver to engage in a distracting task. Lastly, some specific demographic 
characteristics or behavioral information may be correlated with the likelihood of drivers to 
engage in secondary tasks. To understand these relationships, detailed driver behavioral 
information from the SHRP2 program NDS and corresponding RID were integrated into a 
distracted dataset and a non-distracted dataset, as mentioned previously. These data were 
carefully merged together to create one cohesive dataset after generating two separate binary 
indicators: (1) an indicator that identified if a freeway trip event had a distraction occur at any 
time during the trip event, and (2) an indicator that identified the exact time during which the 
distraction was occurring. Using this information, the following questions of interest were 
addressed: 

 Under what roadway conditions were motorists more likely to engage in distracted driving 
activities? 

 What types of drivers, in terms of demographics and risk profiles, were more likely to engage 
in secondary tasks? 

 How did driver distraction affect the crash risk of motorists? 

To examine these questions thoroughly, various regression models were estimated using the data 
from the SHRP 2 NDS. As mentioned previously, each of the participants in the NDS completed 
a series of demographic and behavioral surveys. A written driving test was also conducted that 
determined the participant’s level of traffic knowledge. This included a risk assessment test in 
which the participants characterized the level of risk they associated with various poor driving 
behaviors. An additional portion encouraged the participant to document their likelihood of 
engaging in such driving behaviors and approximate the number of times they exhibited these 
behaviors while driving on the roadway in the past year. 

By linking the well documented distraction indictors from the time-series data to the participant 
survey results, those solicited participants who were distracted during their recorded freeway trip 
events were identified. Using this information, the demographic and characteristic attributes of 
these participants was compared to those individuals who did not engage in a secondary task 
during the study period. The intent of this analysis was to determine the various attributes that 
increased the likelihood of a motorist to engage in a distracting activity while driving. 

To this end, logistic regression models were generated that examined the documented 
characteristics of the study participants. A logistic regression was an appropriate framework for 
the corresponding survey data as the dependent variable (i.e. engaging in a secondary task while 
driving) was dichotomous in nature. The purpose of the model was to describe the relationship 
between the binary dependent variable and the significant independent explanatory variables, 
which described the participant’s demographic characteristics and risk-taking behaviors. The 
assumption of the logistic regression framework was that the significant explanatory variables 
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directly influenced the outcome (or likelihood) of the dependent variable (i.e. engaging in a 
secondary task). The general form of the logistic regression model was a function of the 
covariates as follows: 

𝑌௜ = 𝑙𝑜𝑔𝑖𝑡(𝑃௜) = 𝑙𝑛 ቀ
௉೔

ଵି ௉೔
ቁ =  𝛽଴ +  𝛽ଵ𝑋ଵ,௜ +  𝛽ଶ𝑋ଶ,௜+ . . . + 𝛽௄𝑋௄,௜                                  (Eq. 19) 

where the dependent term, Yi, is the logistic transformation of Pi (Karlaftis et al., 2010). Pi was 
the probability of a freeway trip event involving a distracting behavior. X1,i through XK,i 
represented explanatory variables for each specific survey response, β0 represented a constant 
term, and β1 through βK were the parameter estimates associated with the explanatory variables.  

8.3 Results and Discussion 

This section details a series of analyses of the driver distraction data. Note that each of the model 
estimates in the upcoming tables were generated using a random effects framework; both the 
unique freeway trip event identifier and the unique participant identifier were included as 
random effects parameters. Various regression frameworks were considered to answer the three 
primary research questions, including linear and logistic regression models. 

Numerous types of distractions occurred during the freeway events included in the analysis 
dataset. Because several distraction categories were infrequent, aggregate categories (that 
combined similar types of distractions) were created for further analysis. The types of distraction 
vary greatly, ranging from cell phone usage to eating without utensils; however, similar 
distractions were grouped together from the disaggregate categories and aggregated based on the 
type of action performed within the vehicle. 

Table 27 contains the results of the random effects logistic regression model for any type of 
distraction included in the analysis. To accomplish this, a binary indicator was created that 
identified when any of the distractions that occurred during a freeway event. Therefore, the 
results reflect the conditions and types of individuals who were likely to engage in a distracting 
event. 

Based on the statistical estimates in Table 27, both weather factors and driver behaviors and 
characteristics had a significant impact on the likelihood of engaging in any type of distracting 
activity. While driving in foggy conditions, the likelihood of a driver to engage in a distracting 
secondary behavior was reduced by 42 percent. Conversely, driving during clear weather 
conditions increased the probability of engaging in a distraction by 32 percent. Furthermore, 
drivers with advanced degrees (i.e. any type of graduate degree) were less likely to engage in a 
distraction while operating a motor vehicle. Drivers who reported being involved in two or more 
crashes in the previous twelve months seemed to drive more cautiously, as their likelihood of 
engaging in a distraction was also reduced based on the statistical estimates. After being 
involved in multiple crashes, drivers may experience a significant shift in their behavior while 
driving, which may cause them to be more cautious and take less risks during their trip events. 
Lastly, risk-averse drivers were less likely to engage in any type of secondary task while driving. 
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TABLE 27. Random effects logistic regression model for any distraction 

Variable Estimate Std. Error z-Value Pr(>|z|) 
Intercept 0.662 0.081 8.180 <0.001 
Clear weather conditions 
(1 if yes; 0 otherwise) 

0.279 0.035 8.063 <0.001 

Foggy weather conditions 
(1 if yes; 0 otherwise) 

-0.545 0.119 -4.563 <0.001 

Level-of-service A 
(1 if yes; 0 otherwise) 

0.184 0.020 9.225 <0.001 

Female drivers 
(1 if yes; 0 otherwise) 

0.181 0.020 9.056 <0.001 

Advanced degree 
(1 if yes; 0 otherwise) 

-0.315 0.024 -13.299 <0.001 

Two or more violations within the last twelve 
months (1 if yes; 0 otherwise) 

0.455 0.033 13.595 <0.001 

Two or more crashes within the last twelve 
months (1 if yes; 0 otherwise) 

-0.311 0.044 -7.146 <0.001 

Never drive without wearing a seatbelt 
(1 if yes; 0 otherwise) 

-1.125 0.075 -15.093 <0.001 

Rarely drive without wearing a seatbelt 
(1 if yes; 0 otherwise) 

-0.714 0.082 -8.672 <0.001 

Modal Diagnostics     
Null deviance 57,821 DOF 41,714 
Residual deviance 56,729 DOF 41,705 
AIC 56,749   
Fisher scoring iterations 4   

 

There were also various traffic conditions and behavioral characteristics that increased the 
likelihood of a driver to perform a distracting activity. Distractions were more likely to occur 
during optimal LOS conditions. This finding was intuitive as less traffic is on the roadway under 
LOS A conditions, which may have resulted in the operators feeling more comfortable while 
driving and ultimately engaging in a distracting activity under conditions in which they felt were 
less risky. When considering the gender of the operator, female drivers were more likely to 
engage in a distracting behavior. Lastly, those drivers who noted that they had two or more 
violations within the last twelve months were 58 percent more likely to engage in a distracting 
secondary task. This finding presents an interesting result when compared to the crash event 
estimates in Table 27. Based on the statistical results, those drivers who were repeatedly cited for 
driving violations (i.e. risky drivers) were likely to continue exhibiting poor driving behavior, 
while those that were involved in multiple crash events were less likely to engage in a distracting 
activity. 

Table 28 depicts the statistical estimates of the random effects logistic regression model for 
distractions related to cell phone use. Ultimately, distractions caused by cell phones were 
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classified as any type of interaction with a mobile electronic device while the operator was 
driving along the freeway. This included dialing, talking, listening, texting, or web browsing on a 
cell phone, as well as reaching for a phone. 

TABLE 28. Random effects logistic regression model for cell phone distraction 

Variable Estimate Std. Error z-Value Pr(>|z|) 
Intercept -1.993 0.078 -25.590 <0.001 
Driver selected speed (mph) -0.019 0.001 -21.757 <0.001 
Tangent lane type 
(1 if yes; 0 otherwise) 

0.278 0.040 7.026 <0.001 

Female drivers 
(1 if yes; 0 otherwise) 

0.470 0.036 13.029 <0.001 

Average annual mileage 
less than 5,000 miles 
(1 if yes; 0 otherwise) 

-0.349 0.101 -3.450 <0.001 

Two or more violations 
within the last twelve 
months 
(1 if yes; 0 otherwise) 

0.837 0.046 18.280 <0.001 

Often perform secondary 
tasks 
(1 if yes; 0 otherwise) 

0.806 0.037 21.785 <0.001 

Never drive without 
wearing a seatbelt 
(1 if yes; 0 otherwise) 

-0.177 0.053 -3.360 <0.001 

Modal Diagnostics     
Null deviance 25,717 DOF 41,714 
Residual deviance 23,973 DOF 41,707 
AIC 23,989   
Fisher scoring iterations 5   

 

Table 29 contains the results of the random effects logistic regression model for crash risk during 
the freeway trip events. Using the forward facing video camera imagery, various crash categories 
were recorded by VTTI, including crash events and near-crash events. As mentioned previously, 
a near-crash is any event in which an evasive maneuver must be performed to prevent a crash 
from occurring. These two categories were aggregated together for the analysis of crash risk.  

The results show that female drivers were less likely to be involved in a crash than their male 
counterparts. Furthermore, a similar trend was present between high-risk and risk-averse drivers. 
Risk-averse motorists were generally less likely to be crash involved, while those with a higher 
risk profile tended to have increased crash risks. Various other factors also increased crash risk. 
As the number of lanes increased, the probability of being in a crash event also increased. For 
every one lane increase in the roadway, the crash risk increased by 28 percent.  
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TABLE 29. Random effects logistic regression model for crash risk 

Variable Estimate Std. Error z-Value Pr(>|z|) 
Intercept -2.178 0.054 -40.030 <0.001 
Activity-related distraction 
(1 if yes; 0 otherwise) 

0.492 0.046 10.595 <0.001 

Hygiene-related distraction 
(1 if yes; 0 otherwise) 

0.707 0.080 8.804 <0.001 

Cell phone-related distraction 
(1 if yes; 0 otherwise) 

1.152 0.040 28.829 <0.001 

Internal distraction 
(1 if yes; 0 otherwise) 

1.391 0.050 27.687 <0.001 

Average number of lanes 0.248 0.014 17.619 <0.001 
Female drivers 
(1 if yes; 0 otherwise) 

-0.163 0.028 -5.890 <0.001 

Never tailgate 
(1 if yes; 0 otherwise) 

-0.124 0.029 -4.335 <0.001 

Never race drivers at green signal 
(1 if yes; 0 otherwise) 

-0.572 0.036 -16.103 <0.001 

Rarely race drivers at green signal 
(1 if yes; 0 otherwise) 

-0.398 0.036 -11.131 <0.001 

Often road rage 
(1 if yes; 0 otherwise) 

1.124 0.098 11.511 <0.001 

Model Diagnostics     
Null deviance 36,931 DOF 41,714 
Residual deviance 34,743 DOF 41,704 
AIC 34,765   
Fisher scoring iterations 4   

 

Turning to the primary factor of interest, driver distraction was found to introduce a significantly 
higher risk of crash/near-crash involvement. Four broad categories of distraction were found to 
be correlated with an increase in crash risk. The odds of crash/near-crash involvement increased 
by 63.6 percent if the driver was involved in a general in-vehicle activity, such as singing or 
dancing while driving. Crash risk more than doubled if the driver was engaged in a hygiene-
related activity, such as combing their hair, putting on makeup, etc. A cell phone-related 
distraction increased the odds of a crash or near-crash over 300 percent while another type of 
internal distraction, which diverted the driver’s attention entirely from the road (e.g., reaching for 
a cell phone, touching the radio dials) resulted in a four-fold increase in crash risk. Collectively, 
these statistics highlight continuing concerns with respect to the widespread use of cell phones 
and other forms of in-vehicle distractions by motorists. 
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9.0 DRIVER RESPONSE DURING CRASH/NEAR-CRASH EVENTS 

Each year, more than 6 million motor vehicle crashes occur across the United States, resulting in 
more than 37,000 fatalities (National Center for Statistics and Analysis, 2018). Traffic crashes 
represent a serious public health dilemma and are among the leading causes of death, particularly 
among people ages 16 through 25 (Liu, Singh, & Subramanian, 2015). Research has shown the 
critical reason for crashes is related to the driver in more than 90 percent of all cases (Singh, 
2015), highlighting the importance of better understanding the factors that precipitate crash and 
near-crash events. To this end, human factors, or the interaction among humans and other 
elements of a system, is crucial to safe driving and a critical consideration in the highway design 
process.  

The American Association of State Highway and Transportation Officials’ (AASHTO) A Policy 
on Geometric Design of Highway and Streets (“the Green Book”) notes that human factors and 
driver performance are important when considering the suitability of how a highway is designed 
(AASHTO, 2011). A properly designed highway should be compatible with most drivers’ 
capabilities and restrictions. The possibilities of human errors to occur increase during driving if 
the use of a highway is beyond a driver’s abilities or if the driving environment introduces 
limitations to safe operation. To this end, improved comprehension of driver behavior could 
provide substantial benefit to the areas of roadway design and traffic safety. There are several 
behavioral factors that are of particular interest  to highway design, including reaction time and 
deceleration rate. 

Reaction time reflects driver responses to visual cues in the roadway environment under various 
circumstances. For design purposes, reaction time is defined as “the period from the time the 
object or condition requiring a response becomes visible in the driver’s field of view to the 
moment of initiation of the vehicle maneuver (e.g., first contact with the brake pedal)” 
(Campbell et al., 2012). Average reaction time as per the AASHTO Green Book is 0.6 seconds 
for expected events, which increases by 35 percent for unexpected events (AASHTO, 2011).  

Longer reaction time are generally associated with greater possibilities of human errors. Several 
factors affect reaction time, including characteristics of the driver (e.g., age, experience, 
familiarity), the object (contrast, object height), and the roadway environment (e.g., glare, visual 
complexity). There are multiple circumstances under which a driver would be expected to 
recognize and react to unexpected situations. For example, the driver may encounter an object in 
the roadway requiring a sudden stopping maneuver. 

In this case, understanding drivers’ braking performance is also important to roadway design. 
Collectively, reaction time and deceleration rate are the two critical human factors components 
associated with stopping sight distance. The rate of deceleration reflects driver braking 
performance, with the AASHTO Green Book assuming a rate of 11.2 ft/s2 (0.35 g) for normal 
braking scenarios and 14.8 ft/s2 (0.46 g) for emergency scenarios. NCHRP Report 600 suggests a 
value of 13.8 ft/s2 (0.43 g) for average deceleration rate and 0.38 g for the 85th percentile 
deceleration rate under wet conditions with standard brakes (Campbell et al., 2012). With anti-
locking brake system (ABS), the average deceleration rate is 17.1 ft/s2 (0.53 g), and the 85th 



92 

percentile is around 14.5 ft/s2 (0.45 g) on wet pavements. These typical values are based only on 
the underlying physics without any consideration of human factors. Although the deceleration 
rate or braking behavior is significantly affected by roadway surface conditions, driver 
characteristics may also play an important role (Campbell et al., 2012). Ultimately, both reaction 
time and deceleration rate play an important role in highway design as numerous elements rely 
on these factors, including dimensions for intersections, freeway ramps, and turnout bays for 
buses (AASHTO, 2011).  

Examining issues such as reaction time and deceleration rate is challenging. Much of the prior 
research in this area has utilized traditional methods, such as driving simulator and field 
experiments to study driver behaviors. However, these traditional methods have several inherent 
limitations. For example, the use of driving simulators may not accurately reflect how drivers 
would respond to real-world conditions and study participant behavior may vary due to their 
awareness of participating in a specific experiments (Van Schagen & Sagberg, 2012). Recently, 
naturalistic driving studies (NDS) have introduced a promising means for overcoming these 
limitations. NDS generally collect data by recording real-time information on vehicle kinematics, 
driver behavior, and roadway information through intricate data collection equipment, including 
an array of video cameras and radars. These data have the potential to provide excellent insight 
for researchers to better understand driver performance (Van Schagen et al., 2011). NDS provide 
a robust method to examine research questions through the unobtrusive collection of data on 
driver behavior under natural conditions. 

To this end, the primary objective of this study is to investigate driver behavior preceding crash 
and near-crash events. Of specific interest is how drivers’ reaction times and deceleration rates 
vary under different roadway environments. The second Strategic Highway Research Program 
(SHRP 2) NDS dataset and the associated Roadway Information Database (RID) are used to 
conduct this research. These datasets provide specific information about driving behaviors, 
roadway characteristics, and geometrics, as well as corresponding traffic operations and 
environmental information. 

9.1 Prior Research on Driver Response 

9.1.1 Reaction Time 

Reaction time is one of the critical component of determining stopping, decision, passing, and 
intersection sight distances (AASHTO, 2011). The AASHTO Green Book recommends a  2.5-
second reaction time for stopping sight distance evaluations based upon several previous studies 
(Massachusetts Institute of Technology, 1935; Normann, 1953: Johansson & Rumar, 1971; 
Fambro et al., 1997). 

Many of these early research studies estimated reaction time through field experiments or driving 
simulators. For example, Johansson and Rumar (1971) performed separate experiments among 
two groups, the first of which was required to apply the brakes under expected conditions, as 
well as a second group who were required to brake under both expected and unexpected 
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conditions. The median reaction time among the first group was 0.9 sec., which was equal to the 
75th percentile in the second group. 

Additionally studies have explored factors that could potentially influence reaction time such as 
speed, age, gender, and whether drivers were distracted or not. Olson and Sivak (1986) 
conducted similar experiments and measured reaction times among groups of older and younger 
drivers. The 95th percentile reaction times were approximately 1.6 sec. for both age groups. 
Higgins et al. (2017) found the median reaction time for teenagers (16 to 19 years old) was 1.36 
times larger than among older drivers. Several studies have shown males to exhibit shorter 
reaction times than females (Der & Deary, 2006; Dane & Erzurumluoglu, 2003). 

Tornros (1995) found reaction times were smaller at a lower speed (43.5 mi/h) versus a higher 
speed (68.4 mi/h). Dozza (2013) also found that speed influenced reaction time as higher speeds 
(25-45 mi/h) correlated with smaller reaction times as compared to speeds under 25 mi/h. 
Additionally, drivers had quicker reaction times when they encountered road departures, and 
sideswipe crashes, or experienced darkness. 

Several recent studies have evaluated reaction times using data from naturalistic driving studies. 
Gao and Davis (2017) examined the impact of driver distraction on brake reaction times under 
car-following scenarios from 130 crash, near-crash, and crash-relevant events on freeways from 
the SHRP2 NDS. They found that the longer the duration of distraction for the driver, the longer 
their reaction time. Higgins et al. (2017) examined the influence of distraction on driver’s 
reaction time in analyzing SHRP2 NDS data from 249 lead-vehicle or approaching-vehicle 
incidents involving 179 drivers. The analysis showed the median reaction time was 40.5 percent 
greater among drivers who were involved in visual-manual distractions; the median reaction time 
for crashes or near-crashes events occurred in urban area was 1.377 times longer than the events 
in highway or residential areas. Dozza (2013) investigated variables that impacted reaction time 
using data from the 100-car and 8-truck NDS. The results showed that when the drivers’ eyes 
were off the road, reaction times were significantly greater than when focused on the road. 
Additionally, reaction times for distracted drivers were higher than the attentive drivers. Younger 
drivers showed, on average, less reaction time.  

9.1.2 Deceleration Rate  

There have also been various studies that have examined deceleration rates under various 
settings. Fambro et al. (1997), found that if drivers needed to stop for an emergency or 
unexpected events, or objects in their travel lanes, most of them had deceleration rates greater 
than 14.8 ft/s2 (0.46 g). However, on wet surfaces,  90 percent of drivers decelerated at a rate 
about 11.2 ft/s2 (0.35 g) if they were capable of staying in their driving lane and maintaining 
steering control during the braking maneuver. This serves as the basis for the deceleration rate of 
11.2 ft/s2 in the AASHTO Green Book (AASHTO, 2011).  

Research by Wood and Zhang (2017) summarized findings related to deceleration rates from 
several previous studies (Fambro et al., 1997; Fitch et al., 2010; Paquette & Porter, 2014; 
Deligianni et al., 2017; Ariffin et al., 2017). Average deceleration rates ranged from 8.7 ft/s2 
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(0.27 g) to 24.8 ft/s2 (0.77 g), with most of the deceleration rates exceeding the recommended 
value from AASHTO. This review also found that deceleration rates tended to be lower on 
curves than on tangents, as well as lower on wet versus dry pavements. 

Additional research has investigated the relationship between braking performance and other 
characteristics. For instance, Fitch et al. (2010) used instrumented vehicles to examine 
deceleration rates in response to an inflatable barricade at 45 mi/h, finding strong correlation 
between deceleration rate and gender, age, and vehicle type. A study by Deligianni et al. (2017) 
investigated driver braking behaviors using NDS data from the Pan-European TeleFOT project. 
The results revealed the most critical factors affecting deceleration events were initial speed, 
distance, deceleration profile, and the reason for braking.  

El-Shawarby et al. (2007) investigated braking performance at the onset of a yellow-phase 
transition on high-speed approaches to a signalized intersection and found deceleration rates to 
range from 5.0 ft/s2 (0.16 g) to 24.5 ft/s2 (0.76 g), with an average of 10.7 ft/s2 (0.33 g). The 
results also indicated males decelerated at a slightly higher rate than females while drivers under 
40 years old and over 59 years old had higher deceleration rates as compared to drivers ages 40 
to 59. Loeb et al. (2015) also found age to be an influential factor as novice driver deceleration 
rates were 50 percent less on average as compared to experienced adults. 

Several studies have also utilized SHRP2 NDS data. Wood and Zhang (2017) found the mean 
deceleration rates among crash and near-crash events to be approximately 14.2 ft/s2 (0.44 g). 
Lindheimer et al. (2018) analyzed deceleration rates in urban corridors and compared the braking 
behaviors of drivers involved in crash or near-crash events with those of normal drivers. 
Deceleration rates ranged from 1.84 ft/s2 (0.06 g) to 23.46 ft/s2  (0.73), with an average rate of 
8.38 ft/s2 (0.26 g). 

9.2 Data Summary 

For the purposes of this study, kinematic data were obtained from an initial sample that included 
all events that occurred on freeways over the course of the NDS study that had already been 
reduced by VTTI. Subsequently, these events were filtered to include only crash and near-crash 
events. 

The kinematic data, which were obtained at 10 Hz resolution by the data acquisition system 
(DAS) installed on the subject vehicles, included vehicle speed, acceleration, and brake pedal 
activation. All crash, near-crash, and crash-relevant events include 30-sec. data snapshots, which 
include 20 seconds prior to the precipitating event, as well as 10 sec. after the start of the event. 
These kinematic data were linked with data from event, driver, and vehicle tables that are 
publicly available through the InSight website. 

These data were then integrated with roadway geometric information from the Roadway 
Information Database (RID), which was obtained from the Center for Transportation Research 
and Education (CTRE) at Iowa State University (ISU). The RID is a geospatial database that 
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includes roadway characteristics covering 25,000 miles of roadway where the NDS was 
conducted among the six study states. This includes information such as the number, type, and 
width of travel lanes, grade, cross-slope, horizontal and vertical curve characteristics, and the 
presence of lighting, barriers, rumble strips. 

Ultimately, this study focused on freeways events because design standards are relatively 
consistent across states, traffic flow is generally uninterrupted, and there is less statistical noise 
associated with the vehicle kinematic data. Unfortunately, neither the NDS data nor the RID 
includes a field that specifies roadway functional class. Consequently, a multi-step procedure 
was required that involved: 

1. Identifying prospective freeway events using the “Locality” field from the Event Detail 
table in the InSight database. The Locality type was designated as 
“Interstate/Bypass/Divided Highway with no traffic signals”. 

2. All crash- and near-crash events that occurred along these segments were then integrated 
with the associated Link ID from the RID. A manual review of these segments using 
satellite imagery showed that a significant number of the locations were not limited 
access freeways. 

3. A full review of the events was conducted using Google Earth after filtering the RID 
segments based upon speed limit (55 mph and above), number of lanes (four and above), 
median presence (yes), and presence of a traffic signal within 0.5 miles of either end of 
the event trace (no). 

Once the events had been confirmed to have occurred on a freeway, they were filtered to identify 
those that involved braking maneuvers. This determination was made by utilizing the “V1 
Evasive Maneuver” field from the Event Detail table in the InSight database. There are a total of 
six categories in this field that relate to braking events, which include the following: 

 Braked (no lockup) 
 Braked (lockup) 
 Braked (lockup unknown) 
 Released brakes 
 Braked and steered left 
 Braked and steered right 

After confirming a braking event had occurred, additional events were filtered out from the 
dataset if they occurred under stop-and-go conditions as determined using the “Traffic Density” 
field from the Event Detail table in the InSight database. All cases where this field was equal to 
“Level-of-service F: Forced traffic flow condition with low speeds and traffic volumes that are 
below capacity” were removed to reduce potential biases due to periodic speed reductions under 
congested operations. Lastly, if an event included missing values for more than ten observations 
out of 300 (i.e., 1.0 s out of 30.0 s), the whole event was excluded from the dataset to ensure the 
completeness and accuracy of the data. When less than 1.0 s of data were missing, linear 
interpolation was used to impute missing values. The final dataset ultimately included a total of 
159 events among 126 participants who were involved in crash or near-crash events. 
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9.2.1 Reaction Time Data 

In order to determine reaction times, two timestamps are required from the NDS data: (1) the 
time at which a driver noticed an unexpected event (e.g., another vehicle braking or changing 
lanes, an unexpected object in the roadway); and (2) the time at which the driver started to react 
to this event. There are two different methods by which reaction time has been determined in 
prior analyses of the SHRP2 NDS data. These methods are briefly described here: 

 Gao and Davis (2017) defined reaction time as the time gap between the VTTI-coded 
timestamp for “Event Start” and the timestamp corresponding to the point at which the driver 
started to react. Within the context of this study, the latter time would correspond to when the 
brake pedal was activated. 

 Higgins et al. (2017) defined reaction time as the time gap between the VTTI-coded 
timestamp for “Event Start” and the timestamp for “Subject Reaction Start”. 

The definition for the “Event Start” variable is “the point in the video when the sequence of 
events defining the occurrence of the incident, near-crash, or crash begins, Defined as the point 
at which the Precipitating Event (i.e., the action by the subject vehicle, another vehicle, person, 
animal, or non-fixed object was critical to this vehicle becoming involved in the crash or near-
crash.) begins” (SHRP2 NDS, 2013). The definition for the “Subject Reaction Start” variable is 
the moment when drivers begin to react after they observed the incidents occurring. It was 
manually identified from the facial videos and recorded by the VTTI data reductionist (SHRP2 
NDS, 2013). A quality assurance review was conducted to compare the timestamp for brake 
pedal initiation with the “Subject Reaction Start” field. In general, these timestamps were quite 
close to one another, though occasionally one time would occur before or after the other. 
Consequently, both definitions were examined as a part of this study with the Gao and Davis 
(2017) definition denoted as r1 and the Higgins et al. (2017) definition denoted as r2. 

9.2.2 Deceleration Rate Data 

As in the case of reaction time, in order to determine the deceleration rate, two pieces of 
information are required: (1) the time at which the driver began pressing on the brake pedal (i.e., 
at the conclusion of interval r1 or r2); and (2) the time at which the vehicle reached its minimum 
speed (contingent on the speed occurring after the reaction time had ended). 

Identifying this point required a concurrent manual review of the forward-view video and the 
time-series kinematic data at 10 Hz resolution. Once the initial and final speeds were confirmed, 
the deceleration rate was calculated based on the fundamental kinematic equation: 

 𝑑 =
(௩೑ି ௩೔)

௧
 ,                    (Eq. 20) 

where: 
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 d = deceleration rate (ft/s2) 
 vf = final travel speed when driver reached minimum speed (ft/s) 
 vi = initial travel speed when driver started braking maneuver (ft/s) 
 t = time from start of braking maneuver to reach minimum speed (s) 

As two reaction times were defined (r1 and r2), this also necessitated the calculation of two 
deceleration rates, which are referred to as d1 and d2, respectively. 

9.2.3 Descriptive Statistics 

Table 30 provides summary statistics for the 159 crash and near-crash events included as a part 
of this investigation. Variables are aggregated based upon whether they are based on the time-
series data, describe the roadway/environment, or the driver/event characteristics. For each 
variable, the minimum, maximum, mean, and standard deviation are provided. 

Starting with the primary variables of interest, the mean values for reaction time were 1.57 
seconds (r1) and 1.46 seconds (r2). There were a limited number of events with reaction times of 
0.0 seconds where the timestamp for the “Event Start” corresponded exactly with the “Subject 
Reaction Start” or the time at which the brakes were applied. The maximum reaction times in the 
sample were 5.80 seconds. The average deceleration rates were 9.67 ft/s2 (0.30 g) for d1 and 9.40 
ft/s2 (0.29 g)for d2 and the average speeds at the onset of the braking maneuver were 
approximately 50 mph. 

Three variables were created to classify each of the crash/near-crash events based upon the 
precipitating factors that led to the braking maneuver. Three categories were developed, which 
included “rear-end conflict”, “sideswipe conflict”, and “unexpected object”. These corresponded 
to events in which the driver had to brake due to a lead vehicle braking in front of them, either 
the subject or another vehicle changing lanes and resulting in a conflict, or if an unexpected 
object (e.g., board, bucket) was located in the traveled way, respectively. 

The other variables are broadly reflective of the distribution of events in the NDS freeway 
dataset with a few notable exceptions. Events were overrepresented at 60-mph speed limit, which 
comprised 45 percent of the sample. The NDS also oversampled among young drivers, which 
explains in part why 48 percent of the sample was between ages 16 and 29. There were limited 
instances of some scenarios, including adverse weather conditions. Lastly, only two percent of 
the events included crashes, with the vast majority being near-crashes. This is largely due to the 
fact that location data could not be provided for most of the crash events due to privacy concerns 
related to the personal identifying information in the NDS data. 
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TABLE 30. Summary Statistics for Driver Response Data 

Time-Series Variables (units/values) Min Max Mean Std. Dev 

Reaction time 1 (t1) (sec.) 0.00 5.80 1.57 1.22 
Reaction time 2 (t2) (sec.) 0.00 5.55 1.46 1.27 
Initial speed for d1 (mi/h) 10.02 105.71 50.63 18.62 
Initial speed for d2 (mi/h) 6.35 101.17 49.87 19.10 
Deceleration rate 1 (d1) (ft/s2) 0.55 31.01 9.66 5.04 
Deceleration rate 2 (d2) (ft/s2) 0.16 27.22 9.40 4.94 

Roadway/Environmental Variables (units/values) Min Max Mean Std. Dev 
Lane width (ft.) 9.92 25.70 12.36 2.45 
Number of lanes 1.70 6.00 3.39 0.90 
Left shoulder width (ft.) 0.20 20.97 7.26 3.30 
Right shoulder width (ft.) 0.25 19.23 7.53 3.08 
Horizontal curve (0/1) 0.00 1.00 0.63 0.49 
Degree of curve (degrees) 0.00 2.77 0.38 0.65 
Grade (%) -4.41 2.92 -0.38 1.44 
55 mph speed limit (0/1) 0.00 1.00 0.27 0.45 
60 mph speed limit (0/1) 0.00 1.00 0.45 0.50 
65 mph speed limit (0/1) 0.00 1.00 0.13 0.34 
70 mph speed limit (0/1) 0.00 1.00 0.14 0.35 
Upgrade (0/1) 0.00 1.00 0.54 0.50 
Downgrade (0/1) 0.00 1.00 0.46 0.50 
Level-of-service A (0/1) 0.00 1.00 0.13 0.34 
Level-of-service B (0/1) 0.00 1.00 0.37 0.49 
Level-of-service C (0/1) 0.00 1.00 0.23 0.42 
Level-of-service D (0/1) 0.00 1.00 0.18 0.39 
Level-of-service E (0/1) 0.00 1.00 0.08 0.28 
Clear (0/1) 0.00 1.00 0.37 0.48 
Cloudy (0/1) 0.00 1.00 0.51 0.50 
Fog (0/1) 0.00 1.00 0.01 0.08 
Mist/light rain (0/1) 0.00 1.00 0.06 0.24 
Rain and fog (0/1) 0.00 1.00 0.01 0.08 
Raining (0/1) 0.00 1.00 0.04 0.21 

Driver/Event Related Variables (units/values) Min Max Mean Std. Dev 

Female (0/1) 0.00 1.00 0.58 0.50 
Male (0/1) 0.00 1.00 0.42 0.50 
Age 16 to 29 (0/1) 0.00 1.00 0.48 0.50 
Age 30 to 64 (0/1) 0.00 1.00 0.43 0.50 
Age 65 to 94 (0/1) 0.00 1.00 0.09 0.28 
Not Distracted (0/1) 0.00 1.00 0.79 0.41 
Distracted (0/1) 0.00 1.00 0.21 0.41 
Crash/crash-relevant event(0/1) 0.00 1.00 0.02 0.09 
Near-crash event (0/1) 0.00 1.00 0.98 0.14 
Rear-end conflict (0/1) 0.00 1.00 0.59 0.49 
Sideswipe conflict (0/1) 0.00 1.00 0.38 0.49 
Unexpected object (0/1) 0.00 1.00 0.03 0.16 
Zero violations prior to study (0/1) 0.00 1.00 0.58 0.50 
One violation prior to study (0/1) 0.00 1.00 0.24 0.43 
Two or more violations prior to study (0/1) 0.00 1.00 0.18 0.39 
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9.3 Statistical Methods 

In order to better understand the mechanisms contributing to safety-critical events, a series of 
statistical analyses were conducted to examine various aspects of driver behavior leading up to, 
and during, crash and near-crash events. These analyses involved the estimation of multiple 
linear regression models for reaction time (r1 and r2) and deceleration rate (d1 and d2).  

For analysis purposes, the 10 Hz resolution time-series data were aggregated such that each 
event was included once in the dataset (rather than a repeated measures setup). For time-
invariant variables, such as driver age and gender, this aggregation had no impact. However, 
several variables changed over the course of the 30-s event. For most roadway, environmental, 
driver, and event related factors, the variables were typically averaged over the first 20 seconds 
immediately prior to the precipitating event for the crash. Some variables, such as whether or not 
the driver was distracted, were coded in a binary nature (equal to one if the condition occurred at 
any point prior to the crash/near-crash and zero otherwise). 

Consequently, each observation (i.e., row in the dataset) was associated with one event. The 
reaction time and deceleration rate data were only obtained for those events that resulted in a 
crash or near-crash event. However, average travel speed and standard deviation of travel speed 
were examined for both crash/near-crash events, as well as normal baseline driving events. This 
allowed for an explicit comparison of differences in speed selection behavior between those 
drivers who were crash/near-crash involved and those who were not. 

Each of the dependent variables noted above is essentially continuous in nature. To investigate 
the relationships between continuous variables and a series of independent variables of interest, 
ordinary least square (OLS) linear regression presents an appropriate modeling framework.  The 
functional form (Equation 21) of the OLS linear regression model is (Washington et al., 2011): 

Y୧ =  β଴ + βଵXଵ + βଶXଶ +  ⋯ +  β୩X୩ + ε                                                                           (Eq. 21) 

 Y୧ = Dependent variable (r1, r2, d1, d2, µs, or σୱ) for event i 
 β଴ = Constant term (i.e., y-intercept) 
 βଵ , βଶ ,…, β୩ = Estimated regression coefficients for each independent variable  
 Xଵ ~ X୩ = Independent variables (e.g., driver characteristics, roadway geometry) 
 ε = Normally distributed error term with mean of zero and variance of σଶ 

The error term is assumed to be independently and identically distributed across events. 
However, one concern that arises within the context of this study is that multiple events may be 
correlated since several drivers had a number of different trip events in the analysis dataset. For 
example, one driver was shown to have a reaction time of 3.3 sec. when involved in one event, 
but a 4.2 sec. reaction time when involved in a second event. Likewise, the same driver 
decelerated at 9.29 ft/s2 during the first event and 19.56 ft/s2 during the second event. It is 
assumed that this driver may tend to react or decelerate differently (faster or slower) than other 
drivers due to factors that are not observed in the dataset.  This would result in correlation among 
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events involving this same driver. For the perspective of the analysis, it was critical to account 
for this correlation to avoid any biased estimates for the influences of specific features (e.g., 
drivers’ behavior and roadway characteristics) and underestimate the variability in the reaction 
times and deceleration rate. 

To address the concern discussed before, a participant-specific intercept term was added to the 
model. This intercept term was used to account for the unique characteristics of individual 
drivers (e.g., driving styles and performance, risk perception) which were not able to be reflected 
by the information from NDS and RID. This term allowed the coefficient for each participant in 
every event to remain the same, capturing the variability in reaction times and deceleration rates. 
The functional equation of the model after introducing the participant-specific intercept term is 
given by Equation 22: 

Y୧ =  β଴ + βଵXଵ + βଶXଶ +  ⋯ +  β୩X୩ + ε   +  δ                                                                (Eq. 22) 

δ = A participant- specific intercept term, with a mean of zero and variance of σଶ 

This model is also referred to as the random effect linear regression model. It assumes these 
events were a random sample from a broader driving population with the specific individual 
effects. As in the case of reaction time and deceleration rate, a participant-specific intercept term 
was also included when examining the mean speed and standard deviation in speed for events 
involving the same driver.  

9.4 Results and Discussion 

The primary goal of the study was to understand several driver behaviors by the naturalistic 
driving study. To do so, the freeway events from SHRP 2 NDS program and RID were analyzed 
by utilizing the random effect linear regression models to examine those factors related to the 
driver, vehicle, and roadway that influence reaction time, deceleration rate, and speed selection. 
The results provide insights that are valuable for improving roadway design and other traffic 
safety policies and programs in consideration of driver behavior under these high-risk scenarios. 

9.4.1 Reaction Time 

Due to the unique characteristics of the datasets, the reaction times were calculated in terms of 
two time periods. The first reaction time (r1) was determined depended on the time difference 
between the timestamp of “Event Start” and the time point when the driver applied the brake. 
The distribution of r1 is given in Figure 28. The minimum, maximum, and average values and 
standard deviation of r1 were 0 sec., 5.80 sec., 1.57 sec., and 1.22 sec., respectively. The extant 
literature determined similar results. For example, Dozza (2013) conducted a study that showed 
the mean of the reaction time was 1.45 sec. for both distracted and non-distracted drivers. 
Another study utilized the same method to identify the reaction time indicated that the average 
reaction time of normal drivers was 1.58 sec. and 2.11 sec. for the distracted drivers (Gao, 2017). 
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The second reaction time (r2) was calculated by directly subtracting the timestamps of “Event 
Start” from the timestamps of “Subject Start to React,” which were recorded by the VTTI 
reductionists. The distribution of r2 is also provided in Figure 28. It displays a trend that is 
similar to r1. The histograms for both reaction times displayed right-skewed distributions. 
Additionally, most reaction times fell in the range of 0 to 1 sec. Only a few drivers had reaction 
time greater than 3 sec. Despite the similar distributions, the minimum, maximum, average 
values and standard deviations of r2 were 0 sec., 5.55 sec., 1.46 sec., and 1.27 sec., respectively, 
which were similar to the statistics of r1 to a great extent.  

 

 
Pct. r1 (sec.) r2 (sec.) 
0% 0.000 0.000 
5% 0.290 0.083 
10% 0.400 0.137 
15% 0.500 0.244 
20% 0.600 0.395 
25% 0.700 0.477 
30% 0.740 0.538 
35% 0.800 0.690 
40% 1.000 0.776 
45% 1.100 0.999 
50% 1.200 1.140 
55% 1.400 1.275 
60% 1.600 1.411 
65% 1.700 1.744 
70% 1.900 1.914 
75% 2.100 2.085 
80% 2.400 2.273 
85% 2.700 2.513 
90% 3.300 3.459 
95% 4.210 4.231 
100% 5.800 5.554 

 

 

FIGURE 28  Probability Density & Cumulative Distribution Functions for Reaction Time. 
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In addition to descriptive statistics and distributions, cumulative distribution plots and nth 
percentiles were utilized to compare r1 and r2 as well, which are presented in Figure 28. As 
expected, the probability density and cumulative distribution functions for r1 and r2 were 
comparable. Moreover, Figure 28 showed that the 85th percentile reaction time was, on average, 
2.60 sec. (2.70 sec. for r1, 2.51 sec. for r2), which were similar with the value of 2.50 sec. 
indicated in several previous studies (Massachusetts Institute of Technology, 1935; Normann, 
1953: Johansson & Rumar, 1971; Fambro et al., 1997). Under stopping sight situations, a 2.5 sec. 
reaction time reflects the capabilities of most motorists.  If r1 and r2were compared merely 
regarding data summary and distributions, there were no significant differences between r1 and 
r2. The following sections will examine and compare the factors affecting reaction time to 
provide an in-depth understanding of driver’s reaction time. 

The 159 crash-relevant events were analyzed by the statistical model with the dependent variable 
of reaction time and independent variables of event-related, driver-related, and roadway 
geometrics-related characteristics. The results of r1 and r2 are provided in Table 30.  

The results from Table 30 show that the type of crash/near-crash driving event (i.e., rear-end, 
sideswipe, or reaction to an unexpected object in the roadway), gender of the driver, and whether 
the driver was distracted all exhibited a statistically significant relationship with reaction time. 
This was true for both definitions of reaction time (r1 and r2) that were considered as a part of the 
analysis. The roadway geometrics and other roadway characteristics did not show statistically 
significant correlation with the reaction time in this study. This may be reflective of several 
factors, including the relatively homogenous nature of freeway facilities or the consistency in 
driving behavior on such facilities. 

TABLE 30. Random Effect Linear Regression Model for the Reaction Time 
 

Reaction time 1 (r1) Reaction time 2 (r2) 
Variable Estimate Std. 

Error 
P-value Estimate Std. 

Error 
P-value 

(Intercept) 1.323 0.174 <0.001 1.388 0.174 <0.001 
Rear-end Crashes/Near Crashes 
(1 if yes, 0 otherwise) 

Baseline 

Sideswipe Crashes/Near Crashes 
 (1 if yes, 0 otherwise) 

-0.275 0.199 0.167 -0.588 0.205 0.005 

Encounter Unexpected Objects  
( 1 if yes, 0 otherwise) 

-1.221 0.572 0.037 -1.046 0.598 0.082 

Distracted Female (1 if the driver is 
distracted, 0 otherwise) 

0.869 0.290 0.003 0.977 0.300 0.001 

Distracted Male (1 if the driver is 
distracted, 0 otherwise) 

0.939 0.356 0.009 0.574 0.364 0.117 

Non-Distracted Female (1 if the driver 
is distracted, 0 otherwise) 

Baseline 

Non-Distracted Male (1 if the driver is 
distracted, 0 otherwise) 

0.458 0.218 0.037 0.387 0.218 0.078 
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Reaction times were lowest for crash/near-crash events where non-distracted female drivers 
encountered an unexpected object in the roadway. Reaction times varied with respect to both 
gender and distraction and the results varied within and across genders when considering the two 
different means by which reaction time was calculated.  

The model result for r1 showed drivers reacted 0.27 sec. faster if they were engaged in a 
sideswipe conflict, which could include another vehicle changing lanes unexpectedly (compared 
to the reaction time of rear-end conflicts). Drivers reacted 1.22 sec. quicker (compared to rear-
end events) when they were confronted by unexpected objects in the roadway. Drivers displayed 
the longest reaction times when they encountered rear-end conflicts where the leading vehicle 
began braking. This is likely due, in part, to the fact that drivers were able to pick up on other 
visual cues in advance of when the leading vehicle began its braking maneuver. For example, 
traffic congestion upstream may lead to drivers being generally more alert in these settings. In 
contrast, a vehicle or an object suddenly appearing in the driver’s field of view was likely to be 
more surprising and prompt a more aggressive response from the driver. Most drivers assume 
other motorists would check carefully before they change to another lane and no object would 
suddenly occur on the road, especially on the freeways. However, the braking of a leading 
vehicle would happen more frequently due to the traffic jam or other possible situations. 

Of particular concern, distracted drivers responded significantly more slowly than non-distracted 
drivers. Overall, distracted females and males showed nearly a one-second longer response time 
(0.87 sec. for distracted females and 0.94 sec. for distracted males) as compared to non-distracted 
females. The non-distracted males reacted 0.46 sec. slower than non-distracted females. In cases 
of distraction, the driver’s attention is not completely focused driving and the roadway 
environment and it would be more difficult to notice behaviors of other motorists. These results 
substantiate findings from previous research. Interestingly, the reaction times were almost 
identical for distracted females and males. However, the females showed faster reaction time 
than males under non-distracted situations, even though the extant literature (Der & Deary, 2006; 
Dane & Erzurumluoglu, 2003) suggested males generally react more quickly than females.  

The results for the second reaction time variable (r2) showed comparable findings with the first 
(r1). The drivers responded slower when they confronted the vehicle braking ahead, while the 
drivers had shorter reaction time in situations of sideswipe crashes or near crashes, as well as 
unexpected objects suddenly appearing on the roads. Furthermore, the results presented that 
distractions increased the drivers’ reaction time, and non-distracted females reacted faster than 
non-distracted males. The only result different from r1 was that distracted males were related 
with shorter reaction times compared with distracted females. The reasons of the difference 
between model results of r1 and r2, as well as the difference between previous work and the 
current study might be due to the difference in how the reaction time is determined, the fact that 
females had shorter reaction times under non-distracted conditions in this particular study, or the 
small sample size of the study. Further investigation will be conducted in the future to explore 
this point. 
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9.4.2 Deceleration Rate  

To understand the braking behaviors of drivers, an investigation focused on the deceleration rates 
when drivers started to respond to unexpected events in crash or near-crash scenarios. The 
deceleration rate was calculated from the onset of the braking maneuver to the point at which the 
lowest speed occurred over the course of the event. Two deceleration rates were calculated, with 
these rates calculated at the end of reaction time 1 (r1) and reaction time 2 (r2). These rates are 
referred to as d1 and d2, respectively.  The distribution for d1 is shown in Figure 6. As the data 
summary shows, d1 had an average rate with standard deviation of 9.66 ft/s2 (0.30 g) and 5.04 
ft/s2 (0.17 g), respectively. The calculated average values were marginally lower than the values 
reported in the previous literature. For instance, Wood and Zhang (2017) determined a mean 
deceleration rate of 14.17 ft/s2 (0.44 g) with the standard deviation of 8.32 ft/s2 (0.26 g) for the 
crash and near-crash events from SHRP 2 NDS dataset. These values were determined based on 
the data including all types of roadways and relatively higher sample size. Therefore, the 
deceleration rates in these studies varied from the rate of this study. Another study conducted by 
utilizing the SHRP 2 NDS dataset showed a lower deceleration rate compared to the current 
study. It showed an average deceleration rate of 8.38 ft/s2 (0.26 g). This research only focused on 
near-crash events occurred on urban local roadways during daytime (Lindheimer et al., 2018), 
yet the current study focused on freeway crash and near-crash events during day and night time. 
Thus, the values were moderately different from d1.  

For d2, the average rate and standard deviation of deceleration were 9.40 ft/s2 (0.29 g) and 4.94 
ft/s2 (0.15 g) as summarized in Figure 29, which similar to the values shown previously for d1. 
The distribution of d2 is also depicted in Figure 29. The histograms of two rates were similar to 
each other. The graphs showed the trend of normal distributions with the most values on the 
range of 5 ft/s2 to 15 ft/s2.  

As with reaction time, nth percentiles and cumulative distributions were used to provide 
extensive comparison between d1 and d2, which are included in Figure 29. The values associated 
with each percentile and trend of plots of d1 and d2 were similar with each other. Additionally, 
the finding of deceleration rate supported the finding from previous study. Specifically, 85th 
percentiles of d1 and d2 were comparable to the value of 14.80 ft/s2 (0.46 g) in the study from 
Fambro et al. (1997), which was the braking rate that most drivers had when they encounter 
situations requiring emergency stop. More investigation regarding the deceleration rate will be 
introduced in the following section. 

The deceleration rates were treated as the dependent variables and analyzed by the random effect 
linear regression model with predictors of event-related, driver-related, and roadway geometrics-
related variables. Table 31 exhibits the model results of two deceleration rates.  

In contrast to the reaction time analysis, the results for the two models for deceleration rate 
produced very consistent results. The same variables were found to be statistically significant. 
Furthermore, the magnitudes and signs of the estimated coefficients for each variable in the two 
models were close to each other, as well. 
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Percentile d1 (ft/s2) d2 (ft/s2) 
0% 0.555 0.164 
5% 2.591 2.369 
10% 3.608 3.395 
15% 5.248 4.612 
20% 5.732 5.967 
25% 7.048 6.655 
30% 7.318 6.941 
35% 7.673 7.311 
40% 7.894 7.486 
45% 8.320 8.004 
50% 8.583 8.407 
55% 9.352 9.103 
60% 9.880 9.670 
65% 10.641 10.676 
70% 11.286 11.244 
75% 11.962 12.094 
80% 12.895 13.253 
85% 14.502 14.187 
90% 16.111 16.060 
95% 18.993 18.118 
100% 31.010 27.220 

 

 

FIGURE 29  Probability Density and Cumulative Distribution Functions for Deceleration 
Rate. 

The results indicated there was no correlation between deceleration rate and other event-related, 
driver-related, and roadway geometrics-related factors, except the initial speed of calculation of 
deceleration rate, whether the roadway was in an upgrade, and the types of crash or near crash 
(i.e., rear-end, sideswipe, or reaction to an unexpected object in the roadway). The initial speed 
was a continuous variable. As expected, vehicles with higher initial speed had a higher likelihood 
to decelerate slowly than vehicles with lower initial speed. This phenomenon might be caused by 
the natures of higher speeds and the associated driving behaviors. Specifically, the negative sign 
and estimated coefficient meant as the initial speed increased one mi/hr., the deceleration rate 
decreased 0.05 ft/s2 (0.06 ft/s2 for deceleration rate 2). The findings of the study supported the 
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results of previous studies in the literature. For example, Deligianni et al. (2017) indicated that 
the drivers were more likely to brake at a greater rate if the initial speed was low. 

TABLE 31. Random Effect Linear Regression Model For Deceleration Rate 
 Deceleration Rate (d1) Deceleration Rate (d2) 

Description 
Estimate 

Std. 
Error P-value Estimate 

Std. 
Error P-value 

(Intercept) 12.060 1.165 <0.001 12.277 1.090 <0.001 
Initial Speed (mi/h) -0.047 0.021 0.027 -0.056 0.020 0.005 
Downgrade or Tangent  
(1 if yes, 0 otherwise) Baseline  
Upgrade (1 if yes,0 otherwise) 2.162 0.719 0.003 2.035 0.691 0.004 
Rear-end Crashes/Near Crashes 
(1 if yes, 0 otherwise) Baseline  
Sideswipe Crashes/Near Crashes 
 (1 if yes, 0 otherwise) -3.041 0.789 <0.001 -2.983 0.765 <0.001 
Encounter Unexpected Objects  
( 1 if yes, 0 otherwise) -4.102 2.307 0.077 -4.589 2.216 0.040 
 

Another statistically significant factor was the upgrade roadway. Unlike the initial speed, the 
binary variable was created to indicate if the roadway was an uphill road or not. The negative 
sign and the estimated coefficient demonstrated that the vehicle was more likely to decelerate at 
a rate 2.16 ft/s2 greater on the upgraded roadway than a vehicle decoration rate on the downgrade 
or tangent roadway.  The drivers generally apply brake while they are traveling on the downhill 
roadways for the safety purpose and accelerate on the uphill roadways to provide more tractions. 
Additionally, the gravity might be another significant cause of this situation. The motorists need 
to overcome the gravity while they traveling on an upgrade roadway. Therefore, when an 
unexpected event occurred and drivers traveled on an upgrade roadway, they required to brake at 
a higher rate. 

The following factors in the Table 12 were indicator variables as well. The magnitudes and signs 
of estimated coefficients specified that vehicles encountering sideswipe conflicts with other 
vehicles or unexpected objects suddenly appearing on the roadway were associated with 
deceleration rates 3.04 ft/s2 and 4.10 ft/s2 more, when compared to vehicles observing the brake 
lights of leading vehicles. The drivers involved in the sideswipe crashes or near crashes were 
related to a lowest deceleration rate, while the drivers involved in the rear-end crashes or near-
crashes had a higher likelihood to decelerate at a higher rate. This could be due to the vehicles 
need to fully stop to avoid the conflict with the leading vehicles in most cases, but only require 
slightly speed reduce to stay away from the sideswipe conflicts. 
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10.0 SUMMARY AND CONCLUSIONS 

This study provides important insights into how drivers adapt their behavior under various 
roadway and environmental conditions. Time-series data from the SHRP 2 NDS were leveraged 
to examine how drivers adapt their speeds: 1) under constant speed limits; 2) across speed limit 
transition areas; and 3) along horizontal curves. These speed data were subsequently used to 
investigate the speed-safety relationship by examining crash/near-crash risk on both freeways 
and two-lane highways. The research also examined driver distraction, including the 
circumstances under which distraction was most prevalent, as well as the effects of distraction on 
crash risk. Lastly, driver behaviors were examined leading up to crash and near-crash events to 
assess how reaction times and deceleration rates varied among drivers involved in these safety-
critical events. 

Ultimately, the substantial breadth and depth of data elements available through the NDS for 
crash, near-crash, and baseline driving events provide a unique opportunity to identify salient 
factors impacting traffic safety at the level of individual drivers. The findings from this study are 
largely supportive of the extant research literature and identified several important considerations 
for transportation agencies in considering policies, programs, and countermeasures to address 
speed-related concerns, distracted driving, and various design issues. The following sections 
briefly summarize key findings of this study and discuss the resulting implications, as well as the 
associated limitations and potential avenues for future research.   

10.1 Speed Selection under Constant Speed Limits 

Drivers’ speed selection behavior under constant speed limit was investigated for freeways and 
two-lane highways through the estimation of a series of regression models for each facility type. 
Unsurprisingly, higher speed limits were found to result in higher travel speeds; however, the 
increases in travel speeds tended to be less pronounced at higher posted limits. Drivers are 
generally shown to drive above the posted limited on the lower range of posted speed limits and, 
as limits are increased, mean speeds tend to revert nearer to the posted limit. The maximum 
limits at NDS sites is 70 mph, inhibiting the ability to analyze how this behavior may vary at 
higher limits.  

In addition to responding to changes in speed limits, drivers were found to adapt their speeds 
based upon changes in the roadway environment, such as the introduction of horizontal curves. 
As noted by AASHTO (2011), travel speeds were also found to be affected by other roadway 
and environmental characteristics. Drivers tended to significantly reduce their speeds under 
congested conditions, when adverse weather conditions were present, and when encountering 
work zone environments. As for drivers’ characteristics, it was shown that those who are under 
24 tend to travel at higher speeds, whereas this impact is less pronounced for drivers between 25 
and 59 (both compared to drivers who age over 60).  

Beyond changes to mean speeds, the impacts of speed limits and other characteristic on the 
variability of travel speeds is also of particular interest. Within the context of this study, the 
standard deviation of speeds within individual 20-s event intervals was examined. Consequently, 
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this measure of variability is reflective of how drivers adapt their speeds over space and time. 
This variability is reflective of changes in traffic conditions, geometry, and differences in the 
behaviors of individual drivers. 

On freeways, speeds tended to be more variable at lower posted limits, particularly at 55 and 60 
mph, which is likely reflective of several factors beyond just the posted limit, such as the more 
urban nature of these lower speed facilities. These areas tend to have more frequent interchanges, 
increased levels of congestion, and may exhibit general differences in driving behavior as 
compared to more rural areas. The variability in travel speeds was also found to increase in the 
presence of congestion or work zone activities.  

Likewise, speed fluctuations were generally higher at lower speed limits on two-lane highways, 
as well. Speed standard deviation was increased under traffic congestion, along horizontal 
curves, and in presence of on-street parking which all probably relates back to changes in 
roadway environment, and especially are indicative of more urban areas.  

Ultimately, drivers select their speeds in consideration of a combination of various factors 
including speed limit, roadway geometry, environmental conditions, and driver behavior. The 
impacts of speed limits were shown to be highly variable depending upon these other factors, 
particularly the context of the driving environment. These findings can be used to help support 
policy decisions such as the establishment of maximum limits, as well as the determination as to 
when and where advisory speeds may be appropriate. The results also suggest contexts in which 
the identification of countermeasures and appropriate strategies for speed management are most 
needed. For example, this study demonstrated increased crash risk under variable travel speeds. 
As such, introducing countermeasures including speed display trailers and dynamic speed 
feedback signs to reduce such fluctuations may be beneficial. In addition, this study provided 
some evidence as to incompliance of drivers with advisory speed signs in most cases. 
Consequently, revisiting the criterion for installation of such signs, as well as developing 
uniform guidance are warranted.  

In addition, the outcomes of this study have some important implications in the area of connected 
and autonomous vehicles. These findings can be directly utilized in the learning stages of 
developing CAVs. Further, traffic engineers can benefit from the results of this study to develop 
traffic management strategies to overcome challenges introduced when a mixture of autonomous 
and conventional vehicles is present on the roads.  

10.2 Speed Selection across Speed Limit Transition Areas 

In addition to examining travel speeds under constant speed limits, another related item of 
interest was how drivers adapt their speed when the speed limit increases or decreases. As such, 
speed profiles were examined under a variety of transition areas, where speed limit increases and 
decreases occurred on both freeways and two-lane highways. Time-series data were examined 
from segments with 5, 10, or 15 mph increases or decreases in posted speed limits on freeways. 
Two-lane highways included a wider range of speed limit changes, including increases or 
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decreases from 5 to 20 mph. Collectively, these analyses suggest that speed changes are very 
gradual in the areas immediately upstream and downstream of where the posted limit changes. 

For freeways, speeds were shown to marginally increase at higher speed limits. The differences 
between mean speeds upstream of the new regulatory speed limit were found to be much lower 
compared to those under constant speed limit, which is indicative of speed alterations beginning 
upstream of the new speed limit introduction. Speed profiles were examined for up to 1000 ft 
upstream of the regulatory speed sign location; however, the distance at which drivers started to 
alter their speeds varied significantly between locations depending on  posted limit, size of limit 
change, and other roadway and environmental characteristics. Speeds were shown to decrease 
downstream of the regulatory speed sign by only 0.3 to 1.5 mph where limit reductions were 
introduced. Likewise, muted increases ranging from 0.7 to 1.5 mph were observed when speed 
limits were increased. This is true regardless of whether the magnitude of the increase or 
decrease in limits was 5, 10, or 15 mph. This suggests drivers are: (a) exhibiting different 
behaviors near these transition areas than on similar segments with constant speed limits; and (b) 
the actual posted limit is having minimal impact as compared to other features, such as roadway 
geometry and traffic density.  

Similar phenomena were observed on two-lane highways. At lower speed limits, mean travel 
speeds were found to be significantly above the posted limit upstream of the new regulatory 
speed limit sign. Conversely, mean speeds over the segments upstream of the sign were shown to 
be markedly below the posted limit at higher limits. When speed limits increased, so did the 
travel speeds. Such increases ranged between 1.5 to 3 mph depending on the size of introduced 
limit increase. Again, the largest increases in mean speed were very small in comparison to the 
actual magnitude of the speed limit increases, which were as large as 20-mph in some cases. 
More pronounced changes were observed where limit reductions were introduced, though these 
decreases in mean speeds were still relatively small in consideration of the magnitude of the 
change in limits. For example, speeds were reduced by as much as 6 mph where reductions of 20 
mph were in place. The relatively higher magnitude of reductions in mean speeds may be 
reflective of concerns as to speed enforcement that may occur in concurrence with these 
reductions, as well as more pronounced changes in roadway design. Speeds were found to be 
lower in presence of leading vehicles, as well as under adverse weather condition. Also, speeds 
were shown to reduce markedly along horizontal curves, an impact that was subsequently 
investigated in greater detail. 

10.3 Speed Selection along Horizontal Curves 

Given the impacts of horizontal alignment on travel speeds and the historical overrepresentation 
of crashes on horizontal curves, the final speed analyses conducted as a part of this study were 
focused on examining drivers’ speed selection along horizontal curves, particularly those with an 
advisory speed signs in place. Drivers were found to reduce their speeds on curves, particularly 
on sharper (i.e., smaller radius) curves. These speed reductions were greater in magnitude when 
advisory speed signs were present. Further, the reductions were also larger in magnitude when 
the differences between the posted limit and the advisory speed were larger, as well. However, 
the reductions were found to be markedly smaller than (approximately half of) the recommended 
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advisory speed. This reinforces prior research literature, which has shown advisory speeds to be 
conservative (i.e., lower) compared to what drivers perceive as comfortable (Chowdhury et al. 
1991, Bennett and Dunn 1994). Like speed limit transition areas, drivers were shown to begin 
reducing their speeds upstream of the indicated changepoint. The results demonstrated that much 
of the speed reduction occur between the advisory speed sign and the point of curve (PC).  

Further analysis revealed that drivers tend to start accelerating back to baseline speed while 
within the curve when smaller differences between the posted speed limit and the advisory speed 
was present. Ultimately, drivers were found to adjust their speeds more based on the roadway 
geometry and curve radius rather than the visual cues. In addition, this study found some 
evidence as to inconsistencies in advisory speed sign installations across different locations, a 
finding supported by the past literature, as well (Ritchie, 1972).  

10.4 Crash Risks on Freeways and Two-Lane Highways 

Beyond establishing the relationships between various factors and driver speed selection 
behavior, the overarching goal is to understand how these behaviors influence the risk of a driver 
being involved in a crash. To this end, a series of logistic regression models were estimated to 
identify how speed metrics and various other factors influence crash risk. The results of this 
study showed that increases in the standard deviation of speeds among individual drivers 
significantly increases the risk of crash/near-crash events. This research showed that increases in 
the variability of speeds among individual drivers over time and space during 20-s event 
intervals led to increases in the risk of crash- or near-crash events. This is in contrast to historical 
research in this domain that has examined how speeds vary at individual roadway locations 
across different drivers over short time periods. This variability in speeds may be reflective of 
several factors, such as traffic congestion or differences in individual driving behaviors, which 
collectively contribute to an increased risk of rear-end or side-swipe collisions. 

The risk of a safety-critical event was not found to vary significantly across similar highways 
with different posted speed limits. However, posted speed limits were found to have an indirect 
influence on crash risk, both on freeways and two-lane highways. For example, speed limits 
were shown to affect the variability in travel speeds, which in turn influenced crash risks. In 
addition, several other factors that are directly related to speed also impacted crash risk, 
including level-of-service and highway alignment. Increased crash risk was observed at junctions 
and intersection across freeways and two-lane highways, respectively. However, the likelihood 
of near-crash involvement was found to reduce in presence of driveways and on-street parking 
which probably relates back to lower speeds and greater level of development at such locations.  

From an analysis standpoint, the random effects framework showed significant variability in 
speed selection and crash risk across drivers and locations. This is supported by a meta-analysis 
of research from Europe and the US which concludes that drivers ultimately choose their speeds 
based on perception of safety rather than posted speed limits (Wilmot and Khanal, 1999). These 
findings are largely reflective of driver opinions on speed limits, which suggests speed selection 
is based upon individual perceptions of what speeds are “safe”, traffic volume levels, and driving 
experience. 
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10.5 Prevalence and Impacts of Distracted Driving  

This study provides important insights into driver distraction, as well as the influence of 
distractions on crash/near-crash risk. Driver distraction tended to be less prevalent under adverse 
weather conditions, as well as among certain subsets of the driving population, including those 
with an advanced degree, those who tended to be more risk-averse, and, interestingly, those who 
were involved in two or more crashes within the last twelve months. Conversely, distractions 
were more likely under clear weather conditions and higher levels of service (i.e., low 
congestion). Female drivers and those with two or more moving violations over the past 12 
months were more likely to engage in distracting behaviors. Driver risk-taking behaviors and 
levels of risk perception were quantified through the consideration of proxy survey variables (i.e. 
the frequency of a motorist’s prior engagements in various poor behavior activities) collected 
from all participants in the SHRP2 program NDS. 

Risk analyses were conducted to determine which factors were likely to increase or decrease the 
likelihood of a crash or near-crash event among study participants based on the time-series data. 
From the analysis, females and risk-averse drivers were less likely to be involved in crash/near-
crash events. In contrast, crashes were more likely on roadways with greater numbers of lanes, 
which may be reflective of the greater potential for conflicts on such facilities. Drivers who 
engaged in various high-risk behaviors were found to more likely to be crash-involved. The 
safety analyses also considered various types of distraction to identify those with the greatest 
associated crash risk. From the analysis, the following distraction types were associated with an 
increase in crash risk: 

 Hygiene-related distractions 
 Cell phone-related distractions 
 Internal distractions 
 Activity-related distractions 

Of these, internal distractions increased the crash risk the most. Recall that internal distractions 
involved the operator reaching for or moving an item of interest in their vehicle while driving. 
Drivers may not consider this action as a distracting secondary task that affects their overall 
roadway performance; however, the results of this analysis indicated that these actions diverted 
their attention from the primary driving task and increased their crash risk by a factor of 3 to 4 
times that of a non-distracted driver. 

Based on the results of this analysis, states should consider legislation which results in a 
statewide ban on handheld cell phone usage for all drivers. This ban could include any type of 
cell phone-related distractions, including talking, texting, and browsing while driving. Although 
many automobile and cell phone manufacturers are currently working on integrating their 
technologies together to create a seamless user experience, the results of this analysis suggest 
that this integration should be tailored more towards reducing the number of distractions 
available to the driver. For example, automobile and cell phone manufacturers should limit the 
amount of interaction needed from the driver to use these technologies. This includes the use of 
device interfaces as well as voice activated commands, as both provide opportunities of 
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distraction for the driver. To limit the opportunities for distraction, the automobile and cell phone 
industries should work towards limiting device interactions for the driver while the vehicle is in 
motion. This would reduce the frequency of distractions available while driving to only 
emergency situations and remove some distracting elements that are currently available in 
modern vehicles, such as GPS interactions, cell phone voice commands, and integrated music 
control, among others. 

It is also important for safety-focused transportation agencies to consider the results of this 
analysis, specifically the types of distractions that were prone to increase crash risk. As 
demonstrated by the results, several types of distractions may not be considered distracting by 
most motorists. Although cell phone usage is the focus of many distracted driving campaigns and 
the subject of modern media coverage, there are many other types of distracted driving behaviors 
which reduce roadway safety. By creating public awareness campaigns that broaden the focus of 
distracted driving from only cell phone usage to all types of distractions, including visual, 
manual, and cognitive activities, public education may be able to reduce the multifaceted threat 
that distracted driving has on modern traffic safety. 

10.6 Driver Response during Crash/Near-Crash Events 

This study provides important insights into driver behavior leading up to crash and near-crash 
events. The investigations focused on understanding how reaction time, deceleration rate, and 
speed selection varied with respect to traffic conditions, roadway geometry, driver 
characteristics, and behavioral factors. Driver response and braking behaviors were examined 
under unexpected situations where braking was required. The nature of the NDS data provided a 
unique opportunity to better understand driver performance as compared to more traditional 
study methods. 

The participants’ reaction times were determined using two different methods developed as a 
part of prior NDS research. In general, there was no significant difference in the summary data 
(mean, standard deviation, etc.) and distributions for reaction time across the two methods. The 
average reaction time was about 1.51 sec., with a standard deviation of 1.25 sec. and 85 th 
percentile of 2.60 sec., which supported general findings reported in the literature. The analysis 
results show that reaction time varied based upon the type of crash/near-crash event, the gender 
of driver, and whether the driver was distracted over the course of the driving event. Particularly, 
the drivers were slow to respond to the braking of leading vehicles. The reaction time was longer 
for distracted drivers and males. Other factors such as the age of the driver, weather conditions, 
and the road surface showed no correlation with the reaction time. While the research literature 
has shown those factors to be important determinants of reaction time, it is important to note that 
very small samples were available for many of these areas of concern (e.g., poor weather/surface 
conditions, various age groups). 

A second significant factor, deceleration rate, was evaluated from the end of the response time 
(and the start of braking) by the driver involved in the crash or near-crash event. The means and 
standard deviations of deceleration rates were 9.53 ft/s2 (0.30 g) and 4.99 ft/s2 (0.15g) 
respectively. In addition, the 85th percentile of deceleration rate was about 14.27 ft/s2. The rates 
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identified in this study were comparable to the aforementioned literature values. According to the 
modeling results, the rate of braking was significantly affected by the initial speed of braking, the 
grade of the roadway, and the type of incident. The drivers had higher likelihood to brake at a 
greater rate if the initial speed was low, though it is unclear what explains this specific result. On 
an upgrade roadway or when drivers were involved in rear-end crashes or near crashes, drivers 
tended to decelerate more rapidly. 

The findings of this study provides extensive insights into the driver’s reaction and braking 
behavior under high-risk scenarios resulting in crash or near-crash events. These variables of 
interest are important from several perspectives. First, they provide insights that are useful for 
design practices, such as in the reliable estimation of the stopping sight distance. The results of 
this study help to inform the design of safer transportation systems. The results also demonstrate 
the negative impacts of driver distraction, particularly as it relates to delayed driver response 
during crash precipitating events. 

10.7 Limitations 

Although this study demonstrated some important insights as to drivers’ speed selection under 
various conditions, there were some limitations associated with this study that should be noted. 
The available time-series data included some missing speed and location information that 
resulted in losing some trips. This elimination of traces impacted the associated coverage of 
various roadway and environmental conditions. In addition, insufficient number of trips under 
some of the conditions of interest resulted in the study not being able to discern the actual impact 
of some parameters of interest including level of service and adverse weather condition. It is also 
important to note that roadway, traffic, and weather conditions tended to vary across the six 
study states. For example, Florida and North Carolina did not have any event occurring under 
snowy weather condition while New York and Pennsylvania only had freeways with 55- and 60-
mph limits in the study sample.  

Further, no information was available as to the level and means of speed enforcements across the 
study locations. Another shortcoming in the SHRP 2 NDS data is the lack of information for 
heavy vehicles and how interactions between those and passenger cars impact travel speeds at 
both macro and micro level. In addition, speed selection behavior was examined and compared 
across different roadway segments which may potentially have some inherent differences.  

For the analyses of driver distraction and pre-crash behaviors, the focus was exclusively on data 
collected from participants driving on freeway segments. In addition, the sample size of crash-
and near-crash events was relatively small and limited by the number of such events in the NDS 
dataset.  

10.8 Future Research 

Future research is warranted to examine speed selection behavior across same roadway segments 
prior and after limit changes. This study assessed driver behavior using data from different 
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individuals and locations with similar characteristics. However, as shown by the random effects 
models, there might be some unobserved heterogeneity specific to locations that inhibits 
identifying the actual impact of different roadway and environmental characteristics on travel 
speeds. Consequently, examining speed profiles across same roadway segments under different 
conditions is suggested. 

Further, the findings from this study demonstrated significant differences in speed selection 
behavior between different individuals. Aside from driver age, other individuals’ characteristics 
including risk perception, mental and physical health history, driving experience and level of 
driving exposure need to be investigated for potential impact on speed selection behavior.  
Another item of interest is to examine speed profiles where differential speed limits are in place. 
Currently, only seven states have a differential speed limit along their roadways; however, the 
findings of such analysis have broader impacts as a lot of trucking companies utilize speed 
control devices resulting in de facto differential speeds regardless of the in-place speed limit 
policies. Additional research is also warranted to investigate drivers’ speed selection behavior in 
presence of mixed traffic, and particularly heavy vehicles, and how the presence of such vehicles 
alters drivers’ speed profiles, specifically on two-lane highways.  

Also, as the transportation industry is expected to undergo significant changes in near future due 
to the fast-ongoing advances in automobile industry, examining drivers’ behavior in 
consideration of their use of different levels of automation including cruise control, advanced 
breaking systems, and more advanced technologies might be of interest. This is of great 
importance particularly for the transition period when a mixture of conventional and autonomous 
vehicles is present on the road.  

  



115 

11.0 REFERENCES 

Aarts, L. & I. Van Schagen (2006) Driving speed and the risk of road crashes: A review. 
Accident Analysis & Prevention, 38, 215-224. 

Aljanahi, A., A. Rhodes & A. V. Metcalfe (1999) Speed, speed limits and road traffic accidents 
under free flow conditions. Accident Analysis & Prevention, 31, 161-168. 

American Association of State Highway and Transportation Officials (2011). A Policy on 
Geometric Design of Highways and Streets. Washington, D.C.: American Association of State 
Highway Officials.   

Antin, J., K. Stulce, L. Eichelberger & J. Hankey. 2015. Naturalistic Driving Study: Descriptive 
Comparison of the Study Sample with National Data. 

Ariffin, A. H., Hamzah, A., Solah, M. S., & Isa, M. H. (2017). Comparative Analysis of 
Motorcycle Braking Performance in Emergency Situation. Journal of the Society of Automotive 
Engineers Malaysia,137-145. 

Atchley, P., Tran, A.V., and Ali Salehinejad, M.. "Constructing a Publicly Available Distracted 
Driving Database and Research Tool." Accident Analysis and Prevention, vol. 99, 5 Dec. 2016, 
pp. 306-11. Transportation Research International Documentation. Accessed 21 Sept. 2017. 

Baum, H. M., A. K. Lund & J. K. Wells (1989) The mortality consequences of raising the speed 
limit to 65 mph on rural interstates. American Journal of Public Health, 79, 1392-1395. 

Baum, H.M.,Wells, J.K. and Lund, A.K., The Fatality Consequences of the 65 MPH Speed 
Limits. Journal of Safety Research, Vol. 22, No. 4, pp. 171-177, 1992. 

Bennett, C. R. & R. C. Dunn (1994) Evaluation of the AUSTROADS Horizontal Curve Design 
Standards for New Zealand. Road and transport research, 3, 54-63. 

Burritt, B. E., A. Moghrabi & J. S. Matthias (1976) Analysis of the relation of accidents and the 
88-km/h (55-mph) speed limit on Arizona highways. Transportation research record, 609, 34-35. 

Campbell, J.L., Lichty, M.G., Brown, J.L., Richard, C.M., Graving, J.S., Graham, J., 
O’Laughlin, M., Torbic, D., & Harwood, D. (2012) NCHRP Report 600: Human Factors 
Guidelines for Road Systems, 2nd Edition. Washington, D.C.: National Cooperative Highway 
Research Program. 

Campbell, K.L. "The SHRP2 Naturalistic Driving Study: Addressing Driver Performance and 
Behavior in Traffic Safety." TR News, vol. 282, Sept. 2012, pp. 30-35. 

Chowdhury, M. A., D. L. Warren & H. Bissel (1991) Analysis of advisory speed setting criteria. 
Public roads, 55. 

Cirillo, J.A., Interstate System Accident Research Study II, Interim Report II. Public Roads, Vol. 
35, No. 3, pp. 71-75, 1968. 

Dane, S., & Erzurumluoglu, A. (2003). Sex And Handedness Differences In Eye-Hand Visual 
Reaction Times In Handball Players. International Journal of Neuroscience,113(7), 923-929. 
doi:10.1080/00207450390220367      



116 

Dart Jr, O., Effects of the 88.5-KM/H (55-MPH) Speed Limit and Its Enforcement on Traffic 
Speeds and Accidents. Transportation Research Record No. 643: Journal of the Transportation 
Research Board, pp. 23-32, 1977. 

Davis, A., E. Hacker, P. T. Savolainen & T. J. Gates (2015) Longitudinal analysis of rural 
interstate fatalities in relation to speed limit policies. Transportation Research Record: Journal of 
the Transportation Research Board, 21-31. 

Deen, T.B. and Godwin, S.R., Safety Benefits of the 55 mph Speed Limit. Transportation 
Quarterly, Vol. 39, No. 3, 1985. 

Deligianni, S. P., Quddus, M., Morris, A., Anvuur, A., & Reed, S. (2017). Analyzing and 
Modeling Drivers’ Deceleration Behavior from Normal Driving. Transportation Research 
Record: Journal of the Transportation Research Board,2663, 134-141. doi:10.3141/2663-17   

Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: Results 
from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 62-73.     

Dingus, T. A., S. G. Klauer, V. L. Neale, A. Petersen, S. E. Lee, J. Sudweeks, M. Perez, J. 
Hankey, D. Ramsey & S. Gupta. 2006. The 100-car naturalistic driving study, Phase II-results of 
the 100-car field experiment. 

Dozza, M. (2013). What factors influence drivers’ response time for evasive maneuvers in real 
traffic? Accident Analysis & Prevention,58, 299-308. doi:10.1016/j.aap.2012.06.003   

El-Shawarby, I., Rakha, H., Inman, V. W., & Davis, G. W. (2007). Evaluation of Driver 
Deceleration Behavior at Signalized Intersections. Transportation Research Record: Journal of 
the Transportation Research Board,2018(1), 29-35. doi:10.3141/2018-05 

Elvik, R. (2005) Speed and road safety: synthesis of evidence from evaluation studies. 
Transportation Research Record: Journal of the Transportation Research Board, 59-69. 

Emmerson, J., Speeds of Cars on Sharp Horizontal Curves. Traffic Engineering & Control, Vol. 
11, No. 3, pp. 135-137, 1969. 

Engelberg, J. K., L. L. Hill, J. Rybar, and T. Styer. "Distracted Driving Behaviors Related to Cell 
Phone Use among Middle-Aged Adults." Journal of Transport and Health, vol. 2, 16 May 2015, 
pp. 434-40. Science Direct. Accessed 22 Sept. 2017. 

Fambro, D. B., K. Fitzpatrick, and R. J. Koppa. Determination of Stopping Sight Distances, 
NCHRP Report 400. Washington, D.C., 1997 

Farmer, C. M., R. A. Retting & A. K. Lund (1999) Changes in motor vehicle occupant fatalities 
after repeal of the national maximum speed limit. Accident Analysis & Prevention, 31, 537-543. 

Federal Highway Administration (2009). Manual on Uniform Traffic Control Devices. 
Washington, DC. 

Fildes, B., G. Rumbold & A. Leening (1991) Speed behaviour and drivers’ attitude to speeding. 
Monash University Accident Research Centre, Report, 16, 186. 

Fitch, G. M., Blanco, M., Morgan, J. F., & Wharton, A. E. (2010). Driver Braking Performance 
to Surprise and Expected Events. PsycEXTRA Dataset,2075-2080. doi:10.1037/e578852012-012 



117 

Fitzpatrick, K., and J. M. Collins. Speed-Profile Model for Two-Lane Rural Highways. In 
Transportation Research Record: Journal of the Transportation Research Board, No. 1737, TRB, 
National Research Council, Washington, D.C., 2000, pp. 42–49.  

Fitzpatrick, K., Carlson, P. and Brewer, M.A., Wooldridge, M.D. and Miaou, S.P., NCHRP 
Report 504: Design Speed, Operating Speed, and Posted Speed Practices. Transportation 
Research Board, Washington, D.C., 2003. 

Forester, T.H., McNown, R.F. and Singell, L.D.,  A Cost-Benefit Analysis of the 55 MPH Speed 
Limit. Southern Economic Journal, Vol. 50, No. 3, pp. 631-641, 1984. 

Fowles, R. and Loeb, P.D., Speeding Coordination, and the 55 MPH Limit: Comment. American 
Economic Review, Vol. 79, No. 4, pp. 916-921, 1989. 

Freedman, M. and Esterlitz, J.R., Effect of the 65 mph Speed Limit on Speeds in Three States. 
Transportation Research Record: Journal of the Transportation Research Board No. 1281, 1990. 

Gallaher, M.M., Sewel, C.M., Flint, S., Herndon, J.L., Graff, H., Fenner, J. and Hull, H.F., 
Effects of the 65-MPH Speed Limit on Rural Interstate Fatalities in New Mexico. Journal of the 
American Medical Association, Vol. 262, No. 16, pp. 2243-2245, 1989. 

Gao, J., & Davis, G. A. (2017). Using naturalistic driving study data to investigate the impact of 
driver distraction on drivers brake reaction time in freeway rear-end events in car-following 
situation. Journal of Safety Research,63, 195-204. doi:10.1016/j.jsr.2017.10.012    

Gao, J. "Using Naturalistic Driving Study Data to Investigate the Impact of Driver Distraction on 
Drivers' Reaction Time in Freeway Rear-Ending Events." Transportation Research Circular, vol. 
E-C221, May 2017, pp. 9-21. Science Direct. Accessed 22 Sept. 2017. 

Garber, N.J. and Ehrhart, A.A., Effect of Speed, Flow, and Geometric Characteristics on Crash 
Frequency for Two-Lane Highways. Transportation Research Record No. 1717: Journal of the 
Transportation Research Board, pp. 76-83, 2000. 

Gates, T.J., Savolainen, P.T., Kay, J.J., Finkelman, J. and Davis, A., Evaluating Outcomes of 
Raised Speed Limits on High Speed Non-Freeways. Michigan Department of Transportation, 
2015. 

Glennon, J.C., Neuman, T.R. and Leisch, J.E., Safety and Operational Considerations for Design 
of Rural Highway Curves. Federal Highway Administration, FHWA-RD-83-035, 1983. 

Gliklich, E., R. Guo, and R. W. Bergmark. "Texting while Driving: A Study of 1,211 U.S. 
Adults with the Distracted Driving Survey." Preventive Medicine Reports, vol. 4, 6 Sept. 2016, 
pp. 486-89. Science Direct. Accessed 22 Sept. 2017. 

Golub, G. H., M. Heath & G. Wahba (1979) Generalized cross-validation as a method for 
choosing a good ridge parameter. Technometrics, 21, 215-223. 

Greenstone, M. (2002) A Reexamination of Resource Allocation Responses to the 65‐MPH 
Speed Limit. Economic Inquiry, 40, 271-278. 

Hamzeie, R., P. T. Savolainen & T. J. Gates (2017) Driver speed selection and crash risk: 
insights from the naturalistic driving study. Journal of safety research, 63, 187-194. 



118 

Hamzeie, R., Vafaei, B., Kay, J., Savolainen, P.T. and Gates, T.J. (2017), “A short-term 
evaluation of the transition from a differential to uniform speed limit for trucks and buses on 
two-lane highways”, Transportation Research Record. 

Hankey, J. M., Perez, M. A., & McClafferty, J. A. (2016). Description of the SHRP 2 
Naturalistic Database and the Crash, Near-Crash, and Baseline Data Sets: Task Report(Rep.). 
The Strategic Highway Research Program 2 Transportation Research Board of The National 
Academies. 

Haselton, C.B., Gibby, A.R. and Ferrara, T.C., Methodologies Used to Analyze Collision 
Experience Associated with Speed Limit Changes on Selected California Highways. 
Transportation Research Record No. 1784: Journal of the Transportation Research Board, pp. 
65-72, 2002. 

Higgins, L., Avelar, R., & Chrysler, S. (2017). Effects of Distraction Type, Driver Age, and 
Roadway Environment on Reaction Times – An Analysis Using SHRP-2 NDS 
Data. Proceedings of the 9th International Driving Symposium on Human Factors in Driver 
Assessment, Training, and Vehicle Design: Driving Assessment 2017.  

Hu, W. (2017) Raising the speed limit from 75 to 80 mph on Utah rural interstates: effects on 
vehicle speeds and speed variance, Journal of Safety Research, Vol. 61, 83-92. 

Johansson, G., & Rumar, K. (1971). Drivers Brake Reaction Times. Human Factors: The Journal 
of the Human Factors and Ergonomics Society,13(1), 23-27. doi:10.1177/001872087101300104 

Johnson, S. & D. Murray. 2010. Empirical analysis of truck and automobile speeds on rural 
interstates: Impact of posted speed limits. In Transportation Research Board 89th Annual 
Meeting. 

Kanellaidis, G., J. Golias & S. Efstathiadis (1990) Drivers' speed behaviour on rural road curves. 
Traffic Engineering and Control, 31, 414-415. 

Kockelman, K., J. Bottom, Y. Kweon, J. Ma & X. Wang. 2006. Safety impacts and other 
implications of raised speed limits on high-speed roads. Washington, D.C.: National Cooperative 
Highway Research Program, Rep. No. 17-23. 

Lamm, R. & E. M. Choueiri (1987) Recommendations for evaluating horizontal design 
consistency based on investigations in the state of New York. Transportation Research Record, 
1122, 68-78. 

Lave, C. & P. Elias (1994) Did the 65 mph speed limit save lives? Accident Analysis & 
Prevention, 26, 49-62. 

Ledolter, J. & K. Chan (1996) Evaluating the impact of the 65 mph maximum speed limit on 
Iowa rural interstates. The American Statistician, 50, 79-85. 

Levy, D.T. and Asch, P., Speeding, Coordination, and the 55-MPH Limit: Comment. American 
Economic Review, Vol. 79, No. 4, pp. 913-915, 1989. 

Lindheimer, T., Avelar, R., Dastgiri, S. M., Brewer, M., & Dixon, K. (2018). Exploratory 
Analysis of Deceleration Rates in Urban Corridors Using SHRP-2 Data. Transportation Research 
Record: Journal of the Transportation Research Board. 



119 

Liu, Y., Singh, S., & Subramanian, R. (2015). Motor vehicle traffic crashes as a leading cause of 
death in the United States, 2010 and 2011. (Traffic Safety Facts Research Note. Rep. No. DOT 
HS 812 203). Washington, DC: National Highway Traffic Safety Administration. 

Long, A. D., C. N. Kloeden, P. Hutchinson & J. McLean (2006) Reduction of speed limit from 
110 km/h to 100 km/h on certain roads in South Australia: a preliminary evaluation. 

Lynn, C. and Jernigan, J.D., The Impact of the 65 MPH Speed Limit on Virginia's Rural 
Interstate Highways through 1990, Virginia Transportation Research Council, 1992. 

Mannering, F., Effects of Interstate Speed Limits on Driving Speeds: Some New Evidence. 
Proceedings of the Transportation Research Board 86th Annual Meeting, 2007. 

Massachusetts Institute of Technology. Report of the Massachusetts Highway Accident Survey, 
CWA and ERA project. Massachusetts Institute of Technology, Cambridge, MA, 1935. 

Maycock, G., P. Brocklebank & R. Hall (1998) Road layout design standards and driver 
behaviour. TRL REPORT 332. 

McKnight, A.J. and Klein, T.M., Relationship of 65-MPH Limit to Speeds and Fatal Accidents. 
Transportation Research Record No. 1281: Journal of the Transportation Research Board, pp. 
71-77, 1990. 

McLaughlin, S. B. & J. M. Hankey. 2015. Naturalistic Driving Study: Linking the Study Data to 
the Roadway Information Database. 

McLean, J., Driver Speed Behaviour and Rural Road Alignment Design. Traffic Engineering & 
Control, Vol. 22, No. 4, pp. 208-211, 1981.  

Montella, A. & L. L. Imbriani (2015) Safety performance functions incorporating design 
consistency variables. Accident Analysis & Prevention, 74, 133-144. 

Munden, J. W. (1967) The relation between a driver's speed and his accident rate. Report LR 88. 
Road Research Laboratory, Crowthorne, England. 1967 

National Center for Statistics and Analysis. (2018). Early estimate of motor vehicle traffic 
fatalities for 2017 (Crash•Stats Brief Statistical Summary. Rep. No. DOT HS 812 542). 
Washington, DC: National Highway Traffic Safety Administration. 

National Highway Traffic Safety Administration. (2008) National motor vehicle crash causation 
survey: Report to congress. National Highway Traffic Safety Administration Technical Report 
DOT HS 811 059. 

National Highway Traffic Safety Administration. Traffic Safety Facts Research Note: Distracted 
Driving 2015. 2017. DOT HS 812 381 ed., Washington, DC, U.S. Department of Transportation, 
pp. 1-6. Transportation Research International Documentation. Accessed 21 Sept. 2017. 

Normann, O. K. Braking Distances of Vehicles from High Speeds. Proceedings HRB, Vol. 22. 
Highway Research Board, Washington, DC, 1953. pp. 421–436. 

Olson, P. L., & Sivak, M. (1986). Perception-Response Time to Unexpected Roadway 
Hazards. Human Factors: The Journal of the Human Factors and Ergonomics Society,28(1), 91-
96. doi:10.1177/001872088602800110         

Ossiander, E. M. & P. Cummings (2002) Freeway speed limits and traffic fatalities in 
Washington State. Accident Analysis & Prevention, 34, 13-18. 



120 

Pant, P. D., J. A. Adhami & J. C. Niehaus (1992) Effects of the 65-mph speed limit on traffic 
accidents in Ohio. Transportation Research Record. 

Paquette, M., & Porter, D. (2014). Brake Timing Measurements and the Effect of Brake Lag on 
Deceleration Rates for Light Passenger Vehicles. Accident Reconstruction Journal,24(2), 19-21. 

Parker, M., Effects of Raising and Lowering Speed Limits on Selected Roadway Sections. 
Federal Highway Administration, 1997. 

Patterson, T.L., Frith, W.J., Poveya, L.J., and Keallaand, M.D., The Effect of Increasing Rural 
Interstate Speed Limits in the United States. Traffic Injury Prevention, Vol. 3, No. 4, pp. 316-
320, 2002. 

Polus, A., Fitzpatrick, K. and Fambro, D.B., Predicting Operating Speeds on Tangent Sections of 
Two-Lane Rural Highways. Transportation Research Record: Journal of the Transportation 
Research Board No. 1737, pp. 50-57,  2000. 

Prat, F, M E. Gras, M Planes, S Font-Mayolas, and M.J M. Sullman. "Driving Distractions: An 
Insight Gained from Roadside Interview on their Prevalence and Factors Associated with Driver 
Distraction." Transportation Research Part F, vol. 45, 6 Dec. 2016, pp. 194-207. Science Direct. 
Accessed 22 Sept. 2017. 

Ramsay, J. O. 2006. Functional data analysis. Wiley Online Library. 

Ritchie, M. L. (1972) Choice of speed in driving through curves as a function of advisory speed 
and curve signs. Human Factors, 14, 533-538. 

Royal, D. (2003). Volume II – Findings, National Survey of Speeding and Unsafe Driving 
Attitudes and Behaviors: 2002, Washington, D.C.: National Highway Traffic Safety 
Administration, Rep. No. DOT HS 809 688. 

Schurr, K.S., McCoy, P.T., Pesti, G. and Huff, R., Relationship of Design, Operating, and Posted 
Speeds on Horizontal Curves of Rural Two-Lane Highways in Nebraska. Transportation 
Research Record: Journal of the Transportation Research Board No. 1796, pp. 60-71, 2002. 

Singh, S. (2015). Critical reasons for crashes investigated in the National Motor Vehicle Crash 
Causation Survey. (Traffic Safety Facts Crash•Stats. Rep. No. DOT HS 812 115). Washington, 
DC: National Highway Traffic Safety Administration. 

Solomon, D., Accidents on Main Rural Highways Related to Speed, Driver, and Vehicle. United 
States Burearu of Public Roads, Washington, D.C., 1964. 

Tison, J., Chaudhary, N., & Cosgrove, L. (2011). National Phone Survey on Distracted Driving 
Attitudes and Behaviors (pp. 1-104). Trumbull, CT: Preusser Research Group, Inc. Retrieved 
from Google (DOT HS 811 555). 

Törnros, J. (1995). Effect of driving speed on reaction time during motorway driving. Accident 
Analysis & Prevention,27(4), 435-442. doi:10.1016/0001-4575(94)00084-y            

Upchurch, J., Arizona's Experience with the 65-MPH Speed Limit. Transportation Research 
Record No. 1244: Journal of the Transportation Research Board, pp. 1-6, 1989. 

Van Schagen, I., Welsh, R., Backer-Grøndahl, A., Hoedemaeker, M., Lotan, T., Morris, A., 
Sagberg, F., & Winkelbauer, M. (2011). Towards a large-scale European Naturalistic Driving 



121 

study: Main findings of PROLOGUE. PROLOGUE Deliverable D4.2. SWOV Institute for Road 
Safety Research, Leidschendam, The Netherlands. 

Van Schagen, I.,& Sagberg, F. (2012). The Potential Benefits of Naturalistic Driving for Road 
Safety Research: Theoretical and Empirical Considerations and Challenges for the 
Future. Procedia - Social and Behavioral Sciences,48, 692-701. 

Vieira, F. S., and A. P. C. Larocca. "Drivers' Speed Profile at Curves under Distraction 
Task." Transportation Research Part F, vol. 44, 14 Oct. 2016, pp. 12-19. Transportation Research 
International Documentation. Accessed 21 Sept. 2017. 

Voigt, A., Evaluation of Alternative Horizontal Curve Design Approaches on Rural Two-Lane 
Highways. Texas Transportation Institute, 1996. 

Wagenaar, A. C., F. M. Streff & R. H. Schultz (1990) Effects of the 65 mph speed limit on injury 
morbidity and mortality. Accident Analysis & Prevention, 22, 571-585. 

Wang, B., S. Hallmark, P. Savolainen, and J. Dong (2018). Examining vehicle operating speeds 
on rural two-lane curves using naturalistic driving data, Accident Analysis & Prevention, Vol. 
118, pp. 236-243. 

Washington, S., Karlaftis, M. G., & Mannering, F. L. (2011). Statistical and econometric 
methods for transportation data analysis. Boca Raton, FL: CRC Press.     

Weckesser, P.M., Gage, J.R., Hoffman, T., Horner, G.S., Kyte, G., Litwornia, A.J., Richie, S.M. 
and Streb, P.L., Implications of the Mandatory 55 MPH National Speed Limit. Traffic 
Engineering, Vo. 47, No .2, pp. 21-28, 1977. 

Welford, A. T. (1980). Choice reaction time: Basic concepts. New York, NY: Academic Press.    

West, L.B. and Dunn, J., Accidents, Speed Deviation and Speed Limits. Institute of Traffic 
Engineering, 1971. 

White, S. & A. Nelson (1970) Some effects of measurement errors in estimating involvement 
rate as a function of deviation from mean traffic speed. Journal of Safety Research. 

Wilmot, C. G. & M. Khanal (1999) Effect of speed limits on speed and safety: a review. 
Transport Reviews, 19(4), 315-329. 

Wood, J., & Zhang, S. (2017). Evaluating Relationships Between Perception-Reaction Times, 
Emergency Deceleration Rates, and Crash Outcomes Using Naturalistic Driving Data(Rep. No. 
MPC 17 -338). Fargo: Mountain-Plains Consortium.   

Young, K., & Regan, M. (2007). Driver Distraction: A Review of the Literature. Australasian 
College of Road Safety, 379-405. Retrieved from Google. 

Zlatoper, T.J., Determinants of Motor Vehicle Deaths in the United States: A Cross-Sectional 
Analysis. Accident Analysis & Prevention, Vol. 23, No. 5, pp. 431-436, 1991. 

Zwahlen, H. T. 1987. Advisory speed signs and curve signs and their effect on driver eye 
scanning and driving performance. 


