USING INFRARED THERMOGRAPHY FOR NON-DESTRUCTIVE EVALUATION OF BRIDGES

SHRP2 R06A Peer Exchange January 2019 Nancy Huether, P.E. NDDOT Bridge Division

- Impact Echo
- Ultrasonic Pulse Echo
- Ultrasonic Surface Waves
- Impulse Response
- Ground Penetrating Radar (GPR)
- Half-Cell Potential
- Galvanostatic Pulse Measurement
- Electrical Resistivity
- IR Thermography
- Chain Dragging (Sounding)

Most require specialized equipment and/or training to use and interpret

NON-DESTRUCTIVE EVALUATION (NDE) METHODS FOR BRIDGE DECKS

CHAIN DRAGGING

Advantages:

- Accurate Most commonly used method for determining delamination
- Simple to use
- Delamination is indicated by hollow sound as compared to a clear ringing in sound concrete

Limitations:

- Can be difficult to hear in noisy surroundings
- Dependent on inspector's hearing and experience
- Fairly time-consuming chain has to touch every part of the deck

Are there other NDE methods we can use to assist with Bridge Deck assessment?

NDDOT AWARDED SHRP2 R06A GRANT, SEPT. 2016

- Purchase of Infrared camera
 - Researched and tested several
 - Purchased FLIR T620 March 2017
- SME Training
 - Provided training in Bismarck May 2017
- Additional training and NDE tools
 - ITC (Infrared Training Center) Level I Certification
 - Delam Tool

- Variations in the surface temperature of the bridge deck indicate areas of discontinuity
- Uniform material of uniform depth (sound concrete) heats and cools relatively uniformly
- Uniform material of differing depths heats and cools non-uniformly

USING IR NDE FOR BRIDGE DECK ASSESSMENT

- Areas of a bridge deck with discontinuities will warm and cool more rapidly than the surrounding sound concrete.
- Using an infrared camera to observe these areas will help identify the presence of:
 - Delamination
 - Cracking
 - Voids/Anomolies

USING IR NDE FOR BRIDGE DECK ASSESSMENT

Barriers

USING IR NDE FOR ASSESSMENT OF OTHER BRIDGE ELEMENTS

Beams

ADVANTAGES OF USING IR THERMOGRAPHY

- Non-contact
- Ability to capture images from a distance minimizing traffic disruption and increasing safety
- Not affected by external noise
- Not dependent on inspector's hearing
- Less time consuming than chaining
- Physical image to review
- Images relatively easy to interpret

ADVANTAGES OF USING IR THERMOGRAPHY

- Can use on vertical surfaces such as barriers, piers, abutments, etc.
- Can be used on underside of deck
- Camera is relatively easy to use

Another tool to help assess our bridge condition

Better understanding of bridge condition – better project planning

Current Conditions	Deck Daytime	Shaded Daytime	Shaded Nighttime
	90.5 96 95	set 40.6 59.3 76.6	ser 81.0 NOT IN INSPECTION WINDOW 78
Inspection Window	10/26/2017 12:17:00 PM to 10/26/2017 6:17:00 PM	10/26/2017 12:17:00 PM to 10/26/2017 8:17:00 PM	10/26/2017 7:36:00 PM to 10/27/2017 4:36:00 AM
Time until Inspection (hh:mm)	02:15	02:15	05:04
Time left to Inspect (hh:mm)	03:45	05:45	09:00
Temperature Increase/Decrease 6 Hr After/Before Sunrise/Sunset(Degree F)	N/A	-2.0	-2.1
Past 3hr Temperature Change (degree F/Hr)	-0.4	-0.4	-0.4
Temperature Change Maximum (degree F)	N/A	25	-38
3 Hr Windspeed Average (mph)	+26.9	N/A	N/A

CHALLENGES OF USING IR THERMOGRAPHY

• Weather

- Optimal weather Sunshine, low humidity, calm winds, fairly large temperature changes (10° F minimum; 20° F or more is best)
- Due to thermal sensitivity of T620 can operate in less than optimal conditions

• Timing

 Typically the daytime "window of opportunity" begins about 4-6 hours after sunrise and continues for about 4-6 hours

- Potential misinterpretation of image
- Different materials have different emissivities
 - Emit differing amounts of "heat"
 - Concrete has a high emissivity typically appears close to actual temperature
 - Asphalt has a very high emissivity
 - Shiny metals typically have low emissivities – can't trust apparent temperature
- Need to understand what you are seeing and why it appears as it does

CHALLENGES OF USING IR THERMOGRAPHY

- Potential misinterpretation of image
- Other
 - Shade or shadows
 - Reflected IR radiation
 - Moisture
- Need to understand what you are seeing and why it appears as it does

CHALLENGES OF USING IR THERMOGRAPHY

CHALLENGES OF USING IR THERMOGRAPHY

Unique opportunity to test locally

- Coordinated with Materials and Research Division and Bismarck District Construction
- Measured and marked 10' grid on deck
- Used IR camera to systematically image deck
- Bismarck District chained and marked areas of delamination
- Reimaged deck with IR camera for comparison

Bernie Southam, Tyler Wollmuth, Loren Lee, Travis McCloud, Bismarck District;

Seung Baek, and T. J. Murphy, Materials and Research

Brian Raschke, Bridge Division

FIELD TESTING AT NDDOT 194 RECONSTRUCTION, BISMARCK

- Marking and labeling at 10' intervals along right, left, and center of bridge took about 10 minutes
- Thermal imaging of the deck took about 8 minutes (about 36 images)
 - > 3 passes;12 images per pass
- Chaining took about 45 minutes with 3 people working (2 hrs 15 minutes work time)
 - Included marking delaminated areas

٩P 120.7 128.3 106.5 80.0N46°49'52.59' W100°47'38.09 N46°49'52.61" W100°47'38.03" 88° 5 2°5 18

ADDITIONAL AND FUTURE USES

- Field Reviews to determine scope of work
 - Decks top and bottom
 - Barriers
 - Other Bridge Elements
- Part of Inspection Program/
 - Assist with assessment

THANK YOU!!