

Non-Destructive Testing for Concrete Bridge Decks (R06A) California Department of Transportation

William Owen

Peer Exchange January 30-31 2019

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

History of GPR at Caltrans

- 1998: PE IV and PE 1000
 Utilities, NDT, Geotech
- 2000: Tow Cart
 - Pavements
- 2001: 2-1/2 D Applications
 - Void mapping
 - Pavement research
- 2006: 3-D Visualization
- 2008: Upgrades (PE Pro)
 - Improved tow cart, larger grids, high sample density

- 2009: Pavement Management
 58,000 Lane Miles (2009-2012)
- 2011: Subsurface Utility Engineering (SUE)
- 2015: Multichannel Radar
 - Product Demos (IDS, 3D Radar)
 - Bridge Deck Pilot (3D Radar)
 - SHRP2 Round 6 (R01B-SUE)
 - 2016: SHRP2 Round 7
 - R06D (Pavement)
 - R06A/G (Bridge decks/Tunnels)
 - R01B (SUE)

SHRP2 Technology Overlap

Caltrans SHRP2 Goals

- Validate GPR technology for diverse applications
- Bring high-speed GPR technology to Caltrans for bridge decks & pavements
- Improve testing methodology and reporting
- Training and technology transfer
- Develop appropriate roles, responsibilities and business practices for collaboration

3D Radar Implementation

- Collaboration at State & National Level
 - Funding through FHWA & AASHTO
 - Design and Fabrication through CT-GS and CT-DOE
 - Installation and Testing through CT-GS and UC Davis
- Implementation Challenges
 - Short Delivery Schedule
 - Rigid Mounting System
 - Reliable Power Supply
 - I/O From Multiple Data Streams

Mounting System Fabrication

- 48" Antenna/Vehicle Separation
- <24" Antenna Height</p>
- Use All Four Mounting Brackets

Final Assembly

Final Assembly, Interior

Energy Loss vs. Antenna Height

POS LV - GNSS Aided Inertial Navigation

- Dual Antenna GNSS
 - position, attitude & heading
- Three-axis IMU
 - ✓ Accelerometer & gyroscope
 - ✓ 100 Hz output
- DMI Odometer
 - ✓ Up to 20,000 pulse/m
- Integrated processor
- PC interface
 - Real-time output
 - ✓ User parameter controls

https://www.applanix.com/img/gallery/pos_lv_imu_ant_dmi.png

Real-Time Onboard Processing

- Kalman filter -- raw pseudorange & carrier phase
- IMU -- resolution of initial ambiguities, maintains accuracy during "cycle slip" or GNSS outage (solution from last known position
- GNSS Azimuth Measurement Subsystem (GAMS) --heading & attitude
- Distance Measurement indicator (DMI) -- constrains velocity error and IMU drift

Examiner Image Correction, 50 MPH

GNSS Post-Processing

Examiner Image Quality vs. Position Sample Output

Types of Outputs

Analysis Outputs

- Total pavement thickness
- Intra-layer (Overlay) thickness
- Overlay delamination
- Void distribution
- Rebar location
- Concrete degradation
- Subsurface utility location

QC Outputs

- Gridding accuracy
- Intra-layer accuracy
- Georeferencing accuracy
- Depth/thickness correlation

SR 247, Total HMA Thickness

SR 247, Overlay Thickness

SR 247, Overlay Response

Going Forward

- Process Improvement
 ✓ QA/QC
 - ✓ Automation of data processing/analysis
- Integration with optical and thermal imaging systems
 - ✓ Camera delivery February 2019
 - \checkmark Full synthesis with existing systems
 - ✓ Additional state research funding for implementation
- Deployment for bridge deck surveys Spring 2019

Acknowledgements

- FHWA/AASHTO
- University of California, Davis
 - ✓ Advanced Highway Materials Research Center
- 3D Radar
- Applanix
- California Department of Transportation
 - Division of Equipment
 - ✓ Office of Land Surveys
 - ✓ Pavement Program
 - ✓ Geophysics and Geology Branch

