

Concrete Deterioration Mechanisms

August 2016

Anne-Marie Langlois, P.E.

U.S. Department of Transportation Federal Highway Administration AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

fib Bulletin 34 Model Code for Service Life Design

- Written and distributed by the International Federation of Structural Concrete (*fib*)
- A reliability-based service life design methodology for concrete structure
 - Similar to Load-Resistance Factor Design
- ISO 16204:2012 Service Life Design
 of Concrete Structures

Model Code for Service Life Design

model code

fib Bulletin 34 Model Code for Service Life Design

- All degradation mechanism addressed with 1 of 2 strategies
- Avoidance approach applied for:
 - Carbonation-induced corrosion
 - Sulfate attack
 - DEF
 - AAR
 - Freeze/thaw degradation
- Full probabilistic approach for:
 - Chloride-induced corrosion

Carbonation-Induced Corrosion

- Carbon dioxide from air penetrates the concrete and reacts with calcium hydroxide to form calcium carbonate
- Slow and continuous process that lowers the alkalinity of the concrete
- Leads to uniform corrosion around the steel reinforcement and usually develops later and at slower rates than chlorideinduced corrosion
- Mitigation methods similar than for chloride-induced corrosion
 - low permeability concrete
 - increased concrete cover
- Mitigation for chloride-induced corrosion are sufficient to prevent carbonation

- Portland cement with a moderate to high tricalcium aluminate (C3A) content is used in concrete in contact with sulfate bearing soil or groundwater
- Effects include extensive cracking, expansion, loss of bond between the cement paste and aggregates, and alteration of the paste composition which will cause an overall loss of the concrete strength
- Mitigation methods include using Portland cement with a low C₃A content, providing a concrete with low permeability and a low water-cement ratio, and the use of supplementary cementitious material
- CSA A23.1 and ACI 318 provide guidelines

- Alkali aggregate reaction (AAR) is a chemical reaction between certain minerals such as reactive, non-crystalline silica present in some aggregates and the alkalis present in the concrete
- Cause expansion and cracking of the concrete
- Mitigation methods include selection of non-reactive aggregates as determined by standard test methods, use of low alkali cement (<0.6% equivalent Na₂O) and supplementary cementitious materials
- AASHTO PP65 and CSA A23 proposes mitigation methods based on:
 - the level of reactivity of the aggregates
 - the protection level required

• Level of reactivity of the aggregates:

Aggregate- Reactivity Class	Description of Aggregate Reactivity	One-Year Expansion in CPT (%)	14-Day Expansion in AMBT (%)
R0	Non-reactive	≤ 0.04	≤ 0.10
R1	Moderately reactive	$> 0.04, \le 0.12$	$> 0.10, \le 0.30$
R2	Highly reactive	$> 0.12, \le 0.24$	$> 0.30, \le 0.45$
R3	Very highly reactive	> 0.24	> 0.45

• Risk level:

	Aggregate-Reactivity Class			
Size and exposure conditions	R0	R 1	R2	R3
Non-massive ² concrete in a dry ³ environment	Level 1	Level 1	Level 2	Level 3
Massive ² elements in a dry ³ environment	Level 1	Level 2	Level 3	Level 4
All concrete exposed to humid air, buried or immersed	Level 1	Level 3	Level 4	Level 5
All concrete exposed to alkalis in service ⁴	Level 1	Level 4	Level 5	Level 6

• Prevention level:

	Classification of Structure (Table 4)			
Level of ASR Risk (Table 2)	S1	S2	S3	S4
Risk Level 1	v	v	V	v
Risk Level 2	v	v	W	Х
Risk Level 3	V	W	Х	Y
Risk Level 4	W	Х	Y	Z
Risk Level 5	Х	Y	Z	ZZ
Risk Level 6	Y	Z	ZZ	ŤŤ

- For each protection levels, mitigation methods are proposed such as:
 - limiting alkali content of the concrete
 - using supplementary cementitious materials

Delayed Ettringite Formation

- Form of internal sulfate attack which can occur in concrete cured at elevated temperatures.
- It can be affected by concrete composition, curing conditions and exposure conditions.
- Mitigation methods through proper temperature control during concrete placement and curing (i.e. max core temp = 150°F to 160°F)
- Guidelines in most construction specs by limiting maximum temperature requirements
- Thermal Control Plan

Delayed Ettringite Formation

http://www.fhwa.dot.gov/publications/transporter/04 jul/index.cfm

http://civildigital.com/significance-delayed-ettringiteformation-damage-mechanisms/1typicaldamage/

Freeze-Thaw Degradation

- Freeze-thaw cycles can cause deterioration when the concrete is critically saturated: the water in the pores freezes to ice and expands.
- Typical signs of freeze-thaw damage include cracking, spalling and scaling of the concrete surface and exposure of the aggregates.
- Mitigation methods include air entrainment and freeze-thaw resistance aggregates
- ACI 318 and CSA A23.1 provide guidelines

• Additional precautions may be required if exposure to deicing salts: scaling can occur.

- Scaling resistance of concrete surfaces exposed to deicing chemicals
 - ASTM C672
 - Test duration: 50 days after a 28 day cure
 - Test known to be very severe
 - Test result is a visual rating (subjective?)

Rating	Condition of surface
0	No scaling
1	Very slight scaling (3mm depth, max, no coarse agg. visible)
2	Slight to moderate scaling
3	Moderate scaling (some coarse aggregate visible)
4	Moderate to severe scaling
5	Severe scaling (coarse aggregate visible over entire surface)

Scaling

Mix B Fail

/

- How could we improve this situation?
 - Add a quantitative requirement to the ASTM C672:
 - ex: maximum of 0.5 kg/m² of mass loss
 - Use an alternative test
 - measurable requirement
 - better correlation to in-situ performance
 - CSA A23.2-22CCSA

Other

- Ice Abrasion
- Chemical attacks
- Often few guidelines exist
- Have to rely on past experience, conditions of existing structures in similar environments
- Engineering judgement

Developing Final Specifications

- Identify applicable deterioration mechanisms
- Identify mitigation measures for each deterioration mechanisms
- Develop comprehensive requirements that will sufficiently protect the concrete against all applicable deterioration mechanisms
 - Some mitigation methods are incompatible with each other or will make construction non-practical
 - Specialist's role to define comprehensive requirements that will consider all aspects of the work

Conclusion

- Multiple deterioration mechanisms exist for concrete structures
 - chloride-induced corrosion
 - carbonation-induced corrosion
 - delayed ettringite formation
 - alkali-aggregate reaction
 - freeze-thaw degradation
 - others (ice abrasion, chemical attacks, etc.)
- Most deterioration mechanisms cannot be modeled numerically
- Final Concrete Specifications:
 - consider all these deterioration mechanisms
 - comprehensive, not-conflicting

Questions?

Patricia Bush AASHTO Program Manager for Engineering phutton@aashto.org

Mike Bartholomew CH2M mike.bartholomew@ch2m.com

Anne-Marie Langlois

COWI North America amln@cowi.com

AASHTO SHRP2 R19A Website:

http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

FHWA GoSHRP2 Website:

www.fhwa.dot.gov/GoSHRP2/