

Service Life – Testing & Documentation

Oregon DOT Workshop – Portland, OR

Mike Bartholomew, P.E. Regional Discipline Lead, North American Bridges CH2M (now Jacobs)

January 17, 2018

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Discussion Topics

- Introduction
- Design Issues
 - Environmental Loading
 - Material Properties / Component Dimensions
- Construction Monitoring & Testing Issues
 - Concrete Tests for Durability
 - Concrete Cover Dimension Verification
- In-Service Issues
 - Verification of Actual Performance vs. Planned Performance
- Summary

- Owners are specifying Service Life Design, particularly for projects using alternative project delivery
 - Design-Build (DB)
 - Design-Build-Operate-Maintain (DBOM)
 - Public Private Partnership (P3)
- Service Life Design is not just about design for durability
- It's about management of durability issues throughout the life of the structure
- Designers & Contractors need to be aware of new design, construction, and operations requirements

Condition

Fig. 2-1: Complete service life from birth to death, adapted from [28]

Example Deterioration Model

 Chloride Ingress – Fick's 2nd Law of Diffusion to Corrosion Initiation

$$\begin{split} C_{\text{crit}} \geq C(x = a, t) &= \mathbf{C_o} + (\mathbf{C_{s,\Delta x}} - \mathbf{C_o}) \cdot \left[1 - \text{erf}\left(\frac{a - \Delta x}{2\sqrt{D_{app,C} \cdot t}}\right)\right] \\ D_{app,C} &= k_e \cdot \mathbf{D_{RCM,0}} \cdot k_t \cdot A(t) \\ k_e &= \exp\left(b_e\left(\frac{1}{T_{\text{ref}}} + \frac{1}{T_{\text{real}}}\right)\right) \\ A(t) &= \left(\frac{t_o}{t}\right)^{\alpha} \end{split}$$

- Red Environmental Loading
 - C_o & C_s are the <u>Chloride Background and Surface Concentrations</u>
 - T_{real} is the annual mean <u>Temperature at the project site</u>
- Green Material Resistance
 - $D_{RCM,0}$ is the <u>Chloride Migration Coefficient</u>, α is the <u>Aging Exponent</u>, both are functions of the concrete mix
 - a is the Concrete Cover

New Design Issues

- Determining Properties and Finding Data for Deterioration Models
 - Environmental Loading
 - Material Resistances
 - Chloride Diffusion/Migration Coefficients
 - Critical Chloride Content
 - Concrete Cover Depth

New Design Issues

- Environmental exposure of coastal marine bridges
 - Chloride loading (C_s) based on natural salinity of sea water
 - Data collected from existing documentation or perform salinity tests
- Environmental exposure from de-Icing chemicals
 - Chloride loading (C_s) much more difficult to assess
 - Best source of data is from test coring existing structures in similar environment

New Design Issues

- Deterioration other than from chlorides
- Environmental exposure from Carbonation (CO₂)
 - CO₂ (C_s) concentration from the atmosphere (known)
 - Data collected for CO₂ concentration from emission sources in industrial areas

Durability Tests – Design

Potential Testing	Information Obtained
Specifications	
Nordtest Method NT Build 443 / Accelerated Chloride Penetration (Bulk Diffusion Test) ASTM C1543 / Determining the Penetration of Chloride Ion into Concrete by Ponding (Salt Ponding Test) ASTM C1556 / Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by	C_{S} or $C_{S,\Delta x}$ and Δx Chloride Surface Concentration, used in chloride deterioration model
	Potential Testing Specifications Nordtest Method NT Build 443 / Accelerated Chloride Penetration (Bulk Diffusion Test) ASTM C1543 / Determining the Penetration of Chloride Ion into Concrete by Ponding (Salt Ponding Test) ASTM C1556 / Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion

Durability Tests – Design

Objective	Potential Testing	Information Obtained
	Specifications	
Determine design chloride	ASTM D512 / Chloride Ion in	C _{eqv} , Natural Chloride
loading in brackish water	Water	content of Sea Water used in chloride deterioration model
Determine presence of chemicals (sulfates) in soil and water	ASTM D516 / Sulfate Ion in Water	Sulfate content (% mass SO ₄ in sample)
	ASTM C1580 / Water-Soluble Sulfate in Soil	

Determining Chloride Loading

Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding¹

- Known as the Salt Ponding Test
- Used to develop chloride profiles in test specimens or existing concrete taken from cores
- Results include Surface Chloride Concentration (C_s) and Concrete Apparent Coefficient of Diffusion (D_{app,C}) at age of core

Determining Chloride Loading

nordtest method

NT BUILD 443 Approved 1995–11

Concrete Hardened: Accelerated Chloride Penetration

- Known as the Bulk DiffusionTest
- Used to develop chloride profiles in test specimens or existing concrete taken from cores
- Results include Surface Chloride Concentration (C_s) and Concrete Apparent Coefficient of Diffusion (D_{app,C}) at age of core

Chloride Profile Grinding

Source: Germann Instruments

Determining Chloride Loading

Designation: C 1556 – 04

Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion¹

New Design/Construction Issues

- Resistance to Chloride Ingress by Diffusion is a function of the:
 - Concrete Chloride Migration Coefficient (D_{RCM.0})
 - Cover Depth (a)

• Resistance to Carbonation is a function of the:

- Inverse Carbonation Resistance ($R_{ACC,0}^{-1}$)
- Cover Depth

New Design/Construction Issues

- Resistance to both Chloride Ingress and Carbonation influenced by concrete mix proportions:
 - Type of Cement
 - Water/Cement Ratio
 - Supplemental Cementitious Materials
 - Fly Ash (FA)
 - Ground Granulated Blast Furnace Slag (GGBFS)
 - Silica Fume (SF)

Durability Tests – Design

Objective	Potential Testing	Information Obtained
	Specifications	
Determine design chloride durability resistance properties from trial batch mix designs	Nordtest Method NT Build 492 / Chloride Migration Coefficient from Non-Steady- State Migration Experiments (Rapid Chloride Migration, RCM)	D _{RCM,0} , Chloride Migration Coefficient used in chloride deterioration model
Determine initial chloride content of concrete from trial batch mix designs	Nordtest NT Build 208 / Chloride Content by Volhard Titration ASTM C1152 / Acid Soluble Chloride in Mortar and Concrete	C _o , Initial Chloride Content used in chloride deterioration model

Chloride Migration Test NT Build 492

nordtest method

NT BUILD 492

Approved 1999-11

- Chloride Migration Coefficient from Non-Steady State Migration Experiments
 - Known as the Rapid Chloride Migration (RCM) Test
 - Determines Concrete Chloride Migration Coefficient,
 D_{RCM,0} used directly in fib Bulletin 34 deterioration model
 - 28 day cure, test duration usually 24 hours

NT Build 492 – Test Setup

NT Build 492

• Schematic Test Setup

NORDTEST METHOD

 4" diameter x 2" thick specimen sliced from concrete test cylinder

- 10% Solution of NaCl in water
- Subjected to electrical current to accelerate chloride ingress

NT BUILD 492 5

Fig. 1. One arrangement of the migration set-up.

NT Build 492

- Spray silver nitrate solution on broken surface
- Measure chloride penetration depth
- Calculate Chloride Migration Coefficient, D_{RCM,0}

Fig. 5. Illustration of measurement for chloride penetration depths.

NT Build 492 Test Summary

- Important to perform test at 28 days
- Test takes 24 hours
- One test includes 3 specimens
- Cost of a single test is approximately \$1,000

Other Rapid Chloride Tests

- The RCM Test (NT Build 492) is not to be confused with:
 - ASTM C1202/AASHTO T 277 Standard Test
 Method for Electrical Indication of Concrete's Ability to
 Resist Chloride Ion Penetration
 - AASHTO TP-64 Predicting Chloride Penetration of Hydraulic Cement Concrete by the Rapid Migration Procedure

- Known as the Rapid Chloride Permeability Test (RCPT)
- Measures electrical charge (Coulombs) passed
 through concrete specimen
- Specimens are not split/measured for chloride depth

ASTM C1202 Results

• Qualitative not Quantitative

Table: Chloride Permeability Based on Charge Passed

Charge Passed (Coulombs)	Chloride Permeability	Typical of	
>4,000	High	High W/C ratio (>0.60) conventional PCC	
2,000–4,000	Moderate	Moderate W/C ratio (0.40–0.50) conventional PCC	
1,000–2,000	Low	Low W/C ratio (<0.40) conventional PCC	
100-1,000	Very Low	Latex-modified concrete or internally-sealed concrete	
<100	Negligible	Polymer-impregnated concrete, Polymer concrete	

••

Source: Grace Technical Bulletin TB-0100

- Test procedures appear similar to NT Build 492, but there are subtle differences
- Uses different
 - Duration of test (18 hours)
 - Preconditioning
 - Temperature
 - Voltage
- *fib* Bulletin 34 calibrated to NT Build 492 only

Durability Tests – Design

Objective	Potential Testing	Information Obtained
	Specifications	
Determine carbonation durability resistance properties from trial batch mix designs	RILEM CPC-18 / Measurement of Hardened Concrete Carbonation Depth Accelerated Carbonation Test (ACC) / DARTS: Durable and Reliable Tunnel Structures: Data European Commission, Growths 2000, Contract G1RD-CT-2000-00476, Project GrD1-25633, 2004 Nordtest Method NT Build 357 / Concrete, Repairing Materials and Protective Coating: Carbonation Posistance	R _{ACC,0} ⁻¹ , Inverse Effective Carbonation Resistance used in carbonation deterioration model

- Accelerated Carbonation Test (ACC) DARTS <u>Durable And Reliable Tunnel Structures</u>: Deterioration Modelling, 2004
 - Documented in *fib* Bulletin 34, pages 50-53
 - Specimens cured 28 days in water
 - Placed in carbonation chamber for 28 days and exposed to CO2 concentration of Cs = 2.0 vol.-%
 - Tests performed at 56 days
 - Specimens split, exposed surfaces treated with phenolphthalein and measured for penetration depth
 - Inverse Carbonation Resistance $(R_{ACC.0}^{-1})$ is calculated

Carbonation Test Chamber

Carbonation Tests

• Sample showing carbonated concrete in purple

Critical Chloride Content

					Compositional Requirements			irements	C _{cr} - mass %	C _{cr} - Ratio
			Alloy	UNS	(min %)				by weight	to Carbon
Reinforcing Type	Trade Name	Specification	Туре	Designation	Cr	Мо	Ν	PREN [*]	cement	Steel
		ASTM A615/								
		ASTM A706/								
Carbon steel		AASHTO M31							0.6	1
Epoxy-coated										
carbon steel									0.9	1.5
Galvanized carbon										
steel									1.0	1.67
	MMFX ChrōmX									
	2100 and 2120		CL	K23050	2		0.05	2.8		
	MMFX ChrōmX									
	4100 and 4120		СМ	K42050	4		0.05	4.8	1.2	2
	MMFX ChrōmX									
	9100 and 9120									
	(formerly									
	MMFX ₂)	ASTM A1035	CS	K81550	9.2		0.2	12.4	2.4	4
Low-carbon		ASTM A1035/								
chromium steel		AASHTO M334	CS		9.2		0.05	10	2.4	4

Critical Chloride Content

					Compositional Requireme (min %)				C _{cr} - mass %	C _{cr} - Ratio
			Alloy	UNS	(min %)			by weight	to Carbon	
Reinforcing Type	Trade Name	Specification	Туре	Designation	Cr	Мо	Ν	PREN	cement	Steel
				Cladding						
Stainless steel-clad				S31600 or						
carbon steel		AASHTO M329		S31603	16	2		22.6		
			XM-28	S24100	16.5		0.2	19.7	2.4	4
			XM-29	S24000	17		0.2	20.2		
			304	S30400	18			18		
			304L	S30453	18		0.1	19.6		
Austenitic Stainless		ASTM A955/	316L	S31603	16	2		22.6	3.6	6
Steel		AASHTO M334	316L	S31653	16	2	0.1	24.2		
Duplex (Austenitic-	2101LDX			S32101	21	0.1	0.2	27.33		
Ferritic) Stainless		ASTM A955/	2204	S32304	21.5	0.05	0.05	23.165		
Steel		AASHTO M334	2205	S31803	21	2.5	0.08	31.65	6	10

Durability Tests – Design or Construction

Objective	Potential Testing	Information Obtained
	Specifications	
Determine freeze-thaw and salt scaling susceptibility	CEN/TS 12390-9 / Testing hardened concrete – Part 9: Freeze-thaw resistance – Scaling RILEM TC 176-IDC / Recommendation: CIF Test, Test method of frost	Scaling % by weight or mass per volume
	ASTM C457 / Microscopical	Air/void spacing and
	Determination of Parameters	percentage
	of the Air-Void System in	
	Hardened Concrete	
	ASTM C231 (or C173)/ Air	Air content of concrete
	Content of Freshly Mixed	sample and/or air content of
	Concrete by the Pressure (or Volumetric) Method	mortar portion

Durability Tests – Design or Construction

Objective	Potential Testing	Information Obtained
	Specifications	
Determine potential for reactivity of aggregates in concrete	RILEM TC 191-ARP / Alkali- reactivity and prevention – Assessment, specification and diagnosis of alkali- reactivity. AASHTO R80 / Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction ASTM C1260 / Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)	Expansion % of aggregates for classification of reactivity / Class 1 very unlikely / Class 2 uncertain / Class 3 very likely Determine risk of ASR from reactivity of aggregates and exposure, and determination of supplemental cementitious materials (SCMs) to provide various levels of prevention Average length change in concrete specimens

Durability Tests – Construction

Objective	Potential Testing Specifications	Information Obtained
Verify chloride durability resistance properties during production	Nordtest Method NT Build 492 (Rapid Chloride Migration, RCM)	As constructed D _{RCM,0} , Chloride Migration Coefficient used in chloride deterioration model
Determine initial chloride content of concrete during production	Nordtest NT Build 208 ASTM C1152	As constructed C _o , Initial Chloride Content used in chloride deterioration model
Verify concrete carbonation durability resistance properties during production	RILEM CPC-18 Accelerated Carbonation Test (ACC) / DARTS Nordtest Method NT Build 357	As constructed R _{ACC,0} ⁻¹ , Inverse Effective Carbonation Resistance used in the carbonation deterioration model

- Lack of U.S. standards for measuring cover depth in hardened concrete
- Service Life goal is for complete mapping
 - Measurements Taken on Each Surface
 - Minimum Sample Size 20 per Surface
 - Used to Calculate Mean & Standard Deviations
 - Perform Statistical Evaluation for Acceptance Purposes

Durability Tests – Construction

Objective	Potential Testing	Information Obtained
	Specifications	
Verify clear concrete cover in completed structure	BS1881:204 Testing concrete. Recommendations on the use of electromagnetic covermeters ACI 228.2R-2.51 / ACI Concrete Practices Non Destructive testing: Covermeters	Calibration of covermeters
	The German Concrete and Construction Association (DBV), Technical Report, Concrete Cover and Reinforcement per Eurocode 2. (in German)	Statistical evaluation of measured cover dimensions, a, in hardened concrete

Covermeters

• Sources: Proceq

Elcometer

Concrete Cover Depth

• FHWA's <u>Robotic Assisted Bridge Inspection Tool</u> (RABIT) with Ground Penetrating Radar (GPR)

Cover – Grid Sampling Method

Cover Measurements

	As-Constructed Cover Dimensions at Grid Points [in]											
	Α	В	С	D	E	F	G	Н	Ι	J	K	L
1	2.52	2.20	2.60	2.99	2.05	2.87	2.72	2.80	3.11	2.99	3.11	2.83
2	2.40	2.20	2.48	2.72	2.72	2.76	2.91	2.99	2.17	2.83	2.99	2.09
3	2.24	2.24	1.46	1.57	2.52	2.20	2.36	2.20	2.20	1.89	1.85	2.24
4	1.93	2.01	1.65	2.01	2.24	2.28	2.24	2.13	2.32	2.48	2.52	2.80
5	2.28	2.40	2.09	1.93	2.01	1.89	2.17	1.97	1.81	1.93	2.56	2.32
6	2.99	3.11	2.48	2.09	3.15	2.91	2.83	2.56	2.83	2.72	2.83	2.28
7	2.24	2.99	3.15	1.10	2.60	2.91	2.44	2.99	2.24	2.48	2.24	2.40
8	2.13	1.85	2.20	2.20	2.13	2.83	2.52	2.40	2.20	1.77	2.32	2.48

Statistical Evaluation of Measured Cover Depths, all units [in]

Target threshold %		5%	Qualitative Procedure				
Nominal cover	C nom	2.5	# measurements < c _{min}	10	# allowed per N	7	NG
Safety margin	Δc	0.6					
Req'd minimum cover	C _{min}	1.9	Quantitative Procedure				
Sample size	Ν	96	Outlier cover	X_{OG}	$= 2.5X_{M} - 1.5X_{min}$	4.20	
Median	X_{M}	2.34	Location parameter	r	$= (X + X_M)/2$	2.37	
Min	X_{min}	1.10	Form parameter	k	=1.8 r/s	10.21	
Mean	Х	2.40	Threshold value	c(5%)	$= r/(19^{1/k})$	1.78	
Std. Dev.	S	0.42	Parameter p(x)	p(x)	= c _{min} /r	0.80	
			% of cover depth <c<sub>min</c<sub>	F(x)	$= p(x)^{k}/(1+p(x)^{k})$	9%	>5% NG

In-Service Issues

- Monitoring actual performance vs. design
- Monitoring tests are often destructive (taking cores)
- Alternative to coring is to cast additional test specimens and store on project site in same environmental exposure
- Frequency of testing suggest 10-20 year intervals

In-Service Monitoring & Testing

Objective	Potential Testing Specifications	Information Obtained
Develop chloride profiles from concrete cores taken from structure to verify concrete chloride durability resistance properties and chloride loading	Nordtest Method NT Build 443 (Bulk Diffusion Test) ASTM C1543 (Salt Ponding Test) ASTM C1556 (used with ASTM C1543)	D _{app,C} , Apparent Chloride Diffusion Coefficient as it changes with time, and C _S or C _{S,Δx} and Δx to verify Chloride Surface Concentration. Used to determine α , the aging exponent in the chloride deterioration model
Measure carbonation depth	RILEM CPC-18 Accelerated Carbonation Test (ACC) / DARTS Nordtest Method NT Build 357	x _c (t), Carbonation depth versus time, t, used in the carbonation deterioration model

Monitoring & Documentation

In-Service Monitoring		Chloride Diffusion Coefficient at age t, D _{app,C} (t)		Surface Chloride Concentration, C _s or C _{s,Ax}		Aging Exponent, α		Service Life, t _{sı}	End of Service Date	
			[in²	/yr]	[wt-%	%/cem]	n,	/a	[yr]	[уууу]
	Age, t			Std Dev,				Std Dev,		
Life Cycle Stage	[yr]	Test Method	Mean, µ	σ	Mean, µ	Std Dev, σ	Mean, µ	σ		
Design/Construction										
Assumed Design	0.0767	NT Build 492	0.339	0.136	0.78	0.39	0.6	0.15	>100	2117
	100		0.005							
As-Constructed	0.0767	NT Build 492	0.335	0.134	0.78	0.39	0.45	0.2	100	2117
	100		0.013							
In Service Durability			Measu	red Prope	rties from	Chloride	Regre	ession	Mor	ite Carlo
Monitoring				Profili	ng Tests		Calcu	lation	Calo	culation
Inspection 1	2	ASTM C1556	0.095	0.038	0.78	0.39	0.386	0.171	67	2084
Inspection 2	4	ASTM C1556	0.07	0.028	0.78	0.39	0.393	0.174	70	2087
Inspection 3	8	ASTM C1556	0.05	0.02	0.78	0.39	0.403	0.179	74	2091
Inspection 4	20	ASTM C1556	0.038	0.015	0.78	0.39	0.397	0.176	72	2089
Inspection 5										
Inspection 6										
Inspection 7										
Inspection 8										
Inspection 9	100									

Monitoring & Documentation

Worksheet for Aging Exponent, α

In-Service Monitoring & Testing

Objective	Potential Testing	Information Obtained
	Specifications	
Petrographic analysis	ASTM C856 / Standard	Reactions occurring in the
	Practice for Petrographic	concrete, e.g., alkali
	Examination of Hardened	aggregate, sulphate attack,
	Concrete	leaching.
Surface half cell electrical	ASTM C876 / Standard Test	Variation in surface electrical
potentials	Method for Corrosion	potential as generated by the
	Potentials of Uncoated	reaction of the
	Reinforcing Steel in Concrete	reinforcement with its local
		environment vs. a standard
		reference electrode

In-Service Monitoring & Testing

Objective	Potential Testing	Information Obtained
	Specifications	
Insitu 4 pin Wenner probe	AASHTO TP 95 / Surface	Natural gives areas of
concrete resistivity (natural	Resistivity Indication of	dampness where corrosion is
and after concrete	Concrete's Ability to Resist	a higher risk. Saturated gives
saturation, e.g., by spraying	Chloride Ion Penetration	an indication of the concrete
with water for an hour)		quality and likely corrosion
		rate that would be
	_	supported.
Saturated core 4 pin Wenner		Indication of concrete quality
probe concrete resistivity		and likely corrosion rate that
		would be supported.
Ultrasonic pulse echo,	Guidelines - "Improved	Post-tensioning grouting
impact echo and radar along	Inspection Techniques for	adequacy. Degree of duct
post-tensioning line where	Steel Prestressing/Post-	filling to identify if further
grout specifications are	tensioning Strand" / Florida	inspection and grout filling is
suspect	DOT Contract No. BDK80	required.
	977-13, June 2012	

Documentation

- Design
 - Identify tests to be performed
 - Material durability & geometric design properties
- As-Built Construction
 - Achieved material durability & geometric properties
- In-Service
 - Measured performance

Questions?

Implementation Leads:

- Patricia Bush, AASHTO Program Manager for Engineering, pbush@aashto.org
- Raj Ailaney, *FHWA Senior Bridge Engineer,* <u>Raj.Ailaney@dot.gov</u>

Subject Matter Expert Team:

- Mike Bartholomew, *CH2M,* <u>mike.bartholomew@ch2m.com</u>
- Anne-Marie Langlois, COWI North America, <u>amln@cowi.com</u>

Resource: AASHTO's R19A Product Page

 http://shrp2.transportation.org/Pages/ServiceLifeDesignf orBridges.aspx