

Overview of SHRP2 R19A and Activities Done by Other States

Virginia DOT Workshop - Charlottesville, VA

Mike Bartholomew, P.E. Regional Discipline Lead, North American Bridges CH2M

October 4, 2017

Presentation Overview

- Need for Service Life Design
- SHRP2 R19A Implementation Action Program
 - Program Goals
 - Work Focus Areas
 - Participating Agency (Lead Adopter) Projects
 - Lessons Learned

Summary

Need for Service Life Design

 Growing interest by the industry to make bridges more durable with longer expected lives

- Influenced by political motivation popular to state that a new bridge will last 100+ years...
- Evident by requirements in recent Owner's RFPs
 - particularly on Design Build projects

Service Life Designed Structures

Ohio River Bridge, KY – 2016 (100 years)

Service Life Designed Structures

Tappan Zee Bridge, NY – 2018 (100 years)

Need More Focus on These

 Representing the majority of the 600,000+ bridges in the US

Need for Service Life Design

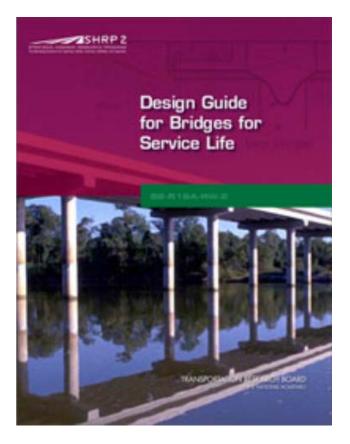
- Expectations of SLD requirements often unclear
- A more robust definition was needed for SLD

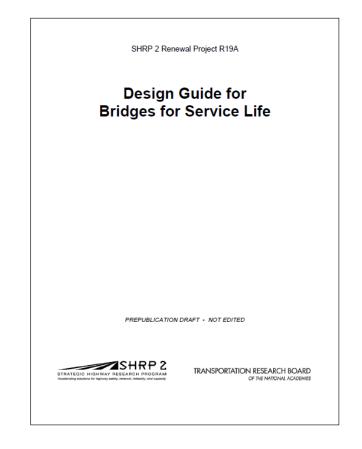
- FHWA in conjunction with AASHTO and TRB through the 2nd Strategic Highway Research Program (SHRP2) initiated project R19A
 - Bridges for Service Life Beyond 100 Years: Innovative Systems, Subsystems and Components

SHRP2 Project R19A

SHRP2 R19A Team

RESEARCH – TRB


IMPLEMENTATION – FHWA/AASHTO


SUBJECT MATTER EXPERTS /
LOGISTICS SME LEAD – CH2M
TECHNICAL SMEs –
COWI

LEAD ADOPTER AGENCIES

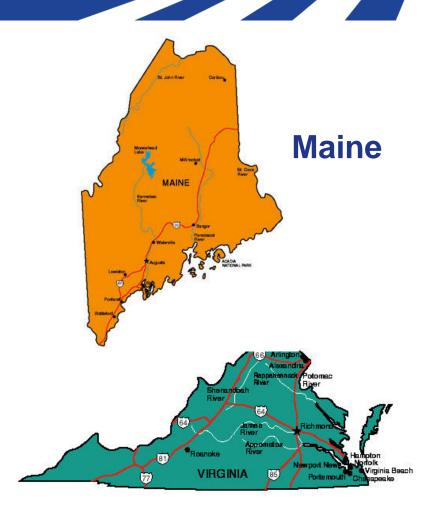
Research Work Completed

Project R19A – Service Life Design Guide

http://www.trb.org/Main/Blurbs/168760.aspx

IAP Lead Adopter Agencies

Oregon



IAP Lead Adopter Agencies

Pennsylvania

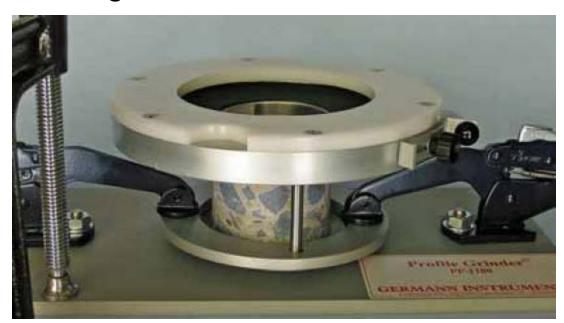
Virginia

IAP Goals

- Promote SLD concepts through:
 - Marketing, outreach & training
 - Workshops & Peer Exchanges
- Assist Lead Adopter agencies in developing inhouse SLD skills
- Build a strong technical foundation
 - Develop training & reference materials
 - Develop "Academic Toolbox"
 - Lessons learned summaries

Current Work Focus Areas

- Performing tests on material durability properties of concrete mix designs
 - Concrete chloride diffusion coefficients (NT Build 492)
 - Measurement of as-constructed concrete cover



Elcometer

Current Work Focus Areas

- Tests on existing bridges to assess environmental loading and material behavior
 - Taking concrete cores to measure chloride loading from de-icing chemicals or sea water

Source: Germann Instruments

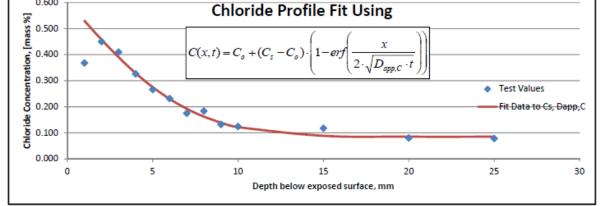
Current Work Focus Areas

Chloride content at

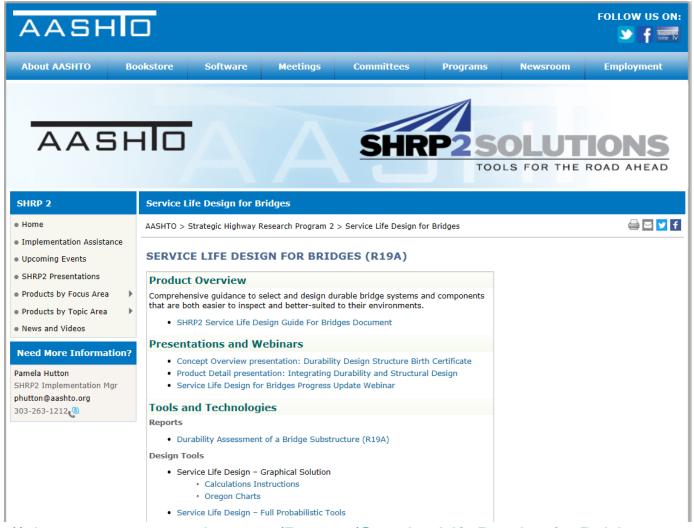
Apparent coefficient of

mass %1

[mm²/yr]


15.324

exposed face


chloride diffusion

- Developing design tools and processes to aid in SLD
 - Excel spreadsheet for chloride profiling

d	depth from surface	[mm]	1	2	3	4	5	6	7	8	9	10	15	20	25		
C _m	Test Values	[mass %]	0.368	0.450	0.410	0.326	0.266	0.231	0.175	0.183	0.132	0.124	0.117	0.080	0.078		
Cc	Fit Data to C _s , D _{app,C}	[mass %]	0.530	0.458	0.391	0.329	0.275	0.230	0.192	0.162	0.139	0.122	0.089	0.085	0.085	∑ (C _m -C _s) ²	
$(C_m - C_s)^2$	Sum of least squares			6.72E-05	3.76E-04	1.10E-05	9.01E-05	1.55E-06	2.93E-04	4.34E-04	5.00E-05	4.66E-06	8.12E-04	2.66E-05	4.90E-05	2.22E-03	
	Initial chloride content																
C _o	(measured)	[mass %]	0.085	0	0.600	Chloride Profile Fit Using											
				\[\sigma	Ι,												
t	Exposure time	[vr]	1).500 🕌												

Implementation Products – Dedicated Webpage

http://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx

IAP Projects

IAP Team Leaders

- FHWA Central Federal Lands
 - Bonnie Klamerus, Mike Voth
- Iowa DOT
 - Ahmad Abu-Hawash, Norm McDonald
- Oregon DOT
 - Bruce Johnson, Paul Strauser, Zach Beget, Ray Bottenberg,
 Andrew Blower, Craig Shike
- Pennsylvania DOT
 - Tom Macioce
- Virginia DOT
 - Prasad Nallapaneni, Soundar Balakumaran

FHWA Central Federal Lands

 Tropical Coastal Exposure on North Shore, Island of Kauai, HI

- 3 bridge replacements - 500' to 1,000' from the

coastline

FHWA Central Federal Lands

- Testing brackish water salinity
- Coring of existing abutments at water line / splash zone for surface chloride concentration

 NT Build 492 tests performed on baseline concrete mix designs

Iowa DOT

 New Bridge at Site with Extreme De-Icing Spray Exposure

- Using A1010 High Chromium Structural Steel
- Lab and field testing A1010 for steel corrosion resistance performance
- Recommendations from ODOT experience Hormoz Seradj

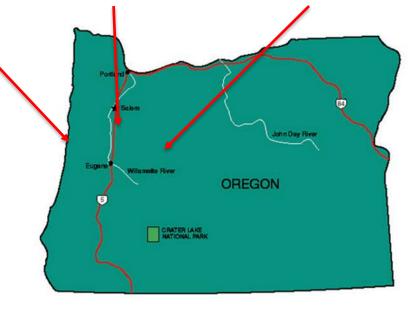
Iowa DOT

 Replacement of Twin Structures on I-35 over South Skunk River near Ames

- Chloride profile testing on existing structures
- NT Build 492 tests on concrete mix designs
- SB Bridge Designed to current Iowa DOT policies
- NB Bridge Will be designed using SLD
- Final Product Side-by-side comparison report between the two structures

Maine DOT

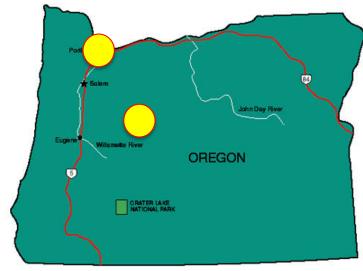
- Replacement of Beals Island Bridge in cold weather coastal environment
 - Chloride profiling on existing bridge
 - NT Build 492 tests on proposed concrete specifications



Oregon DOT

 Bridge Deck Evaluation in Various Chloride Exposure Zones

 Performed chloride profile testing and categorization of chloride loading by geographic/climatic zones (Pacific Coast, Willamette Valley, Cascade Mountains


and east)

Oregon DOT

- I-5 Columbia River Crossing Design/Build Portland to Vancouver
 - Evaluate/modify RFP requirements for contractor to design/document to a 100-year service life

 Replacement Bridge over Ochoco Creek in Prineville

Pennsylvania DOT

- Statewide Evaluation of Chloride Resistance of Concrete
 - Performed NT Build 492 tests on 105 samples from 7 ready mix and 2 precast concrete suppliers

Figure 1: Company location map relative to PennDOT districts

Lessons Learned

Lessons Learned

- Chloride profiling on core samples produce much better results than powder samples from rotary drilling
- Deicing application is low enough in some parts of Oregon to disregard corrosion from chlorides
- Need to develop contour maps of chloride loading
- Chloride migration tests (NT Build 492) are relatively easy to implement
 - Virginia and Iowa performing in-house testing

Lessons Learned

- Most state concrete classifications are flexible in w/c ratio, and % flyash or slag replacing cement
- Mix design flexibility ≠ Consistent durability properties
 - Chloride migration test values (NT Build 492)
 - Aging coefficients (need ≥ 20% flyash to benefit)
- Need to develop guidelines for more consistent concrete specifications for SLD

IAP Next Steps

- Conduct Agency Final Training Workshops for CFL, IA, OR, ME
- Develop Reference Material Documentation / add to AASHTO/SHRP2 web page
 - Academic Toolbox
 - Lessons Learned Summaries
- Develop 5 FHWA Peer Exchanges in non-IAP states

Current Research - NCHRP 12-108

- Uniform Service Life Design Guide Specification
 - Sponsored by AASHTO T-9 Bridge Preservation Technical Committee
 - Modjeski & Masters / John Kulicki / Rutgers University/ COWI / NCS GeoResources
- Project Goals
 - Develop AASHTO Guide Specification for Service Life Design of Highway Bridges
 - Develop Case Studies to Demonstrate the Application of the Proposed Guide

Current Research - NCHRP 12-108

- Deemed-to-Satisfy and Avoidance of Deterioration
 Strategies to form the majority of the Guide Specification
 - Calibrated by more rigorous approaches
- Full Probabilistic and Partial Factor Methods
 - Included as an Appendix
- Environmental Classification
- Recommended Service Life
 - Main Structure Components
 - Replaceable Components
 - Bearings, Joints, etc.

Current Research – NCHRP 12-108

Work Plan / Schedule

- Tasks 1 & 2 Literature Review and Synthesis
- Task 3 Develop Proposed Methodology
- Tasks 4a & b Propose Annotated ToC & Case Studies
- Task 5 Interim Report #1(all completed 03/10/17)
- Tasks 6, 7 & 8 Develop & Execute Methodology & Sample Section &
 Interim Report #2 (scheduled 10/01/17)
- Tasks 9 & 10 Develop Guide and Case Studies (scheduled 07/01/18)
- Tasks 11 & 12 Revisions & Final Deliverables (scheduled 12/01/18)
- End of Project (scheduled 02/28/19)

Summary

- Service Life Design is necessary to promote more durable, longer lasting structures
- Current implementation
 - SHRP2 R19A projects (FHWA CFL, IA(2), ME, OR, PA, VA)
- Tools being developed to assist designers
 - http://shrp2.transportation.org/Pages/ServiceLifeD esignforBridges.aspx
- AASHTO T-9 Initiated Research
 - NCHRP 12-108 Uniform Service Life Design Guide

Questions?

Implementation Leads:

- Patricia Bush, AASHTO Program Manager for Engineering, pbush@aashto.org
- Raj Ailaney, FHWA Senior Bridge Engineer, Raj.Ailaney@dot.gov

Subject Matter Expert Team:

- Mike Bartholomew, CH2M, mike.bartholomew@ch2m.com
- Anne-Marie Langlois, COWI North America, amln@cowi.com

Resource: AASHTO's R19A Product Page

 http://shrp2.transportation.org/Pages/ServiceLifeDesignf orBridges.aspx