

Nondestructive Testing Technologies for Concrete Bridge Decks (R06A)

Dennis Sack, Olson Engineering SME Randy Strain, Indiana Department of Transportation Corey Withroe, Oregon Department of Transportation Kathy Crowell, New Mexico Department of Transportation

Webinar April 30, 2019

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

R06A Webinar Agenda

- AASHTO Introduction
- FHWA Introduction
- NDT of Bridge Decks moving forward -Hoda Azari (FHWA)
- R06A NDT background on GPR, Impact Echo and Infrared Cameras – Dennis Sack - SME
- State Experiences Indiana DOT
- State Experiences Oregon DOT
- State Experiences New Mexico DOT
- Questions & Answers

Focus Areas

Safety: fostering safer driving through analysis of driver, roadway, and vehicle factors in crashes, near crashes, and ordinary driving

Reliability: reducing congestion and creating more predictable travel times through better operations

Capacity: planning and designing a highway system that offers minimum disruption and meets the environmental and economic needs of the community

Renewal: rapid maintenance and repair of the deteriorating infrastructure using already-available resources, innovations, and technologies

SHRP2 Implementation: INNOVATE. IMPLEMENT. IMPROVE.

SHRP2 Implementation: INNOVATE. IMPLEMENT. IMPROVE.

Hoda Azari, Ph.D.

NDE Research Program Manager Infrastructure Management Team Federal Highway Administration Turner-Fairbank Highway Research Center

SHRP2 R06A FHWA NDE Program Update

and the second second second		1	
		A	T
			-
	Alantal		
		- {	
			Ť

U.S. Department of Transportation
Federal Highway Administration

SHRP2 R06A Renewal Research

Challenge

 To find non-destructive ways to analysis bridge and tunnel deteriation

Solution

Using technologies such as:

- Ground Penetrating Radar
- Infrared Thermography
- Surface Waves
- Impact Echo

Nondestructive Testing to Identify Concrete Bridge Deck Deterioration

SHRP2 RENEWAL RESEARCH

REPORT S2-R06A-RR-1

SHRP2 R06A Implementation

Round 4 had 8 State DOT awards and Round 7 had 14 State DOT awards. The support consisted of:

- Technical Assistance
 for Rounds 4 and 7
- Field visits and training for State DOT's
- Peer Exchange workshop in Portland Oregon Jan. 30, 2019

R06A Round 4 for Bridges

- Louisiana
- Virginia
- Indiana
- Iowa
- Florida
- Pennsylvania
- Oregon
- Missouri

R06A Round 7 for Bridges

- 14 states completed their Round 7 testing, validating, and purchasing of various NDT technologies like Infrared Cameras and GPR.
 - Alabama
 - Arkansas
 - Delaware
 - Georgia
 - Hawaii
 - lowa
 - Kentucky
 - North Carolina
 - California

- North Dakota
- Nebraska
- New Mexico
- New York
- Oregon

Ongoing Projects

• Technology Evaluation:

NDE techniques on bridge decks with overlay Conventional and Phased-array UT for Steel a Unmanned Arial System (UAS) /ertical crack

side - 6"

middle

Shallow delamination

8"×12

Deep delamination

Technology Development/Enhancement:
 Non-contact impact echo
 Magnetic NDE for presolution
 Use of high resolution
 damage detection of b
 Data fusion and visual

FHWA Resources to States

NDE Web Manual

- Provide concise and unbiased guidance to help practitioners identify the NDE technologies that can serve their specific need.
- URL: <u>https://fhwaapps.fhwa.dot.gov/ndep/</u>

Virtual NDE Lab

_	_			_	_	_	_	_	_		
1000		8			0	0	6	0.	•	8.	
	0						0	0			
									0		
								0	0	۰.	
	0						0		0	•	
						0		0	0	0	9
							0		0	07	
							0		0	0	
								0	0		
									•		
									0	0	
		•	0								
1											
										0.	
	0	2.)			0	0	S	0		0	

Transparency

Impact Echo (IE) Ultrasonic Surface Waves (USW) Infrared Thermography (IRT) Ground Penetrating (GPR)

Electrical Resistivity (ER) High-Resolution Imaging (HRI)

Interactive Data Portals

Point #130 is selected.

Experimental Results

The impact-echo method is based on monitoring the surface displacements associated with the arrival of the P-wave as it undergoes multiple reflections between the top and bottom surfaces

The measured voltage, proportional to the surface displacement, is plotted against the time as the waveform. Response spectrum is also presented by absolute Fast Fourier Transform based on the chosen range of waveform. The frequencies corresponding to the dominant amplitude peak for each spectrum are collected to form the contour map with colors, where

- 5000 10000 15500 20000
 frequency (Hz)
 blue colors indicate regions
 dominated by a low-frequency
 response referring to shallow
 delamination,
- red colors indicate regions dominated by a high-frequency response referring to intermediate delamination,
- orange indicates the regions of deep delamination,
 light blue, green and light yellow
- colors indicate the normal or nondefected solid regions.

Simulation Portals

Technical Assistance

- Piece of concrete falls off Bay Bridge tunnel in Feb 2016
- Request From Caltrans for independent validation of sounding results

Moving Forward

- Potential pooled fund projects:
 - Integrating NDE Technologies into condition rating and asset management
 - Documenting NDE best practices and owner-defined return on investment
 - Further advancing and improving the NDE technologies
 - Developing AASHTO specification on data collection and analysis of NDE technologies
 - Developing training and education material for NDE technologies

NDT Methods for Bridge Decks Summary and Discussion

Dennis A. Sack, P.E. Larry D. Olson, P.E. Olson Engineering

AMERICAN ASSOCIATION of State Highway and Transportation Officials

Challenge: Evaluating the Full Range of Deterioration Types

Deterioration of Interest

- Delamination
- Corrosion
- Vertical cracking
- Degradation

NDT Technologies of SHRP2 R06A

				Lane
NDT Techniqu	e Mode of Deterioration Detected	System	Resolution	Closure
IE	1) Deeper cracks	1) Scanning	High	Yes
	- top and bottom rebar mat	2) Point by Point	Grid size	Yes
	2) Shallow delaminination			
	3) Concrete degradation			
	- ASR/DEF			
	- Freeze thaw			
GPR	1) Corrosion	1) Air coupled	Lower	No
	2) Cracks (if filled with deicing			
	salt)	2) Ground coupled	High	Yes
	3) Concrete degradation			
IR	Shallow delamination	1) Truck mounted	High	No
	- Top and bottom	2) Handheld	High	Yes
Resistivity	Corrosion	Point by Point	Grid size	Yes
Half Cell/GP	Corrosion	Point by Point	Grid size	Yes
Slab IR	Cracks	Point by Point	Grid size	Yes
SASW	1) Vertical cracks	1) Scanning	High	Yes
	2) Concrete degradation	2) Point by point	Grid size	Yes
Sounding	Only shallow delamination	Manual		Yes

Most Commonly Used NDT Methods Based on SHRP2 Work

- Ground Penetrating Radar (GPR)
- Infrared Thermography (IR)
- Impact Echo and Impact Echo Scanning (IE and IES)
- Scanning Spectral Analysis of Surface Waves (SASW)
 - (for asphalt overlaid concrete)

Infrared Thermography Testing

- Most commonly performed on concrete and concrete overlaid bridge decks
- Can detect delaminations at only the top rebar mat (unless done from the deck bottom)
- Cannot "see" through debonded overlays
- Not sensitive to rebar or chlorides in concrete (results will often NOT match GPR results)
- Results will generally show larger areas of delamination and incipient delamination compared to chain dragging
- Requires correct thermal environment to be effective (results affected by shading, weather, time of day, etc.)

IR Testing Performed on a Bridge Deck

Infrared Imaging with Low-Cost Hand-held IR Camera

FLIR-1 Hand-Held IR Cameras

Hand-Held IR Examples

MEASUREMENTS	(°F)
Spot	

PARAIVIETERS	
Emissivity	0.95
Refl. temp.	68.0 °F
Distance	3.28 ft
Relative humidity	50 %
Atmospheric temperature	68.0 °F
Transmission	0.94
Lat.	N 41° 49.72'
Long.	W 93° 34.73'

DADAMETEDO

Deck Spall and Nearby Delamination

85.6

Hand-Held IR Examples

 Deck Paint Marks PLUS Nearby Small Delaminations (above and below paint)

IR Bridge Inspection Planner Web Tool

TPF-5(247) THERMOGRAPHY PROJECT PHASE II

IR Bridge Inspection Planner (IR BIP)

Auto Locate

Current Location: Leesburg, VA

Current Conditions	Deck Daytime	Shaded Daytime	Shaded Nighttime
ANNAL AND		905 93 93	ROT RI RSPECTOR WINDOW 7
Inspection Window	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM
Inspection Window Time until Inspection (hh:mm)	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM 03:20	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM 03:20	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM 06:44
Inspection Window Time until Inspection (hh:mm) Time left to Inspect (hh:mm)	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM 03:20 02:40	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM 03:20 04:40	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM 06:44 09:00
Inspection Window Time until Inspection (hh:mm) Time left to Inspect (hh:mm) Temperature Increase/Decrease 6 Hr After/Before Sunrise/Sunset(Degree F)	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM 03:20 02:40 N/A	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM 03:20 04:40 +5.4	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM 06:44 09:00 -9.0
Inspection Window Time until Inspection (hhrmm) Time left to Inspect (hhrmm) Temperature Increase/Decrease 6 Hr After/Before Sumise/Sunset(Degree F) Past 3hr Temperature Change (degree F/Hr)	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM 03:20 02:40 N/A +0.8	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM 03:20 04:40 +5.4 +0.8	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM 06:44 09:00 -9.0 +0.8
Inspection Window Time until Inspection (hh:mm) Time left to Inspect (hh:mm) Temperature Increase/Decrease 6 Hr After/Before Sumise/Sunset(Degree F) Past 3hr Temperature Change (degree F/Hr) Temperature Change Maximum (degree F)	4/11/2015 10:39:00 AM to 4/11/2015 4:39:00 PM 03:20 02:40 N/A +0.8 N/A	4/11/2015 10:39:00 AM to 4/11/2015 6:39:00 PM 03:20 04:40 +5:4 +0.8 10:4	4/11/2015 8:43:00 PM to 4/12/2015 5:43:00 AM 05:44 09:00 -9:0 +0.8 -24

http://www.fuchsconsultinginc.com/FCIWeatherChecker1.aspx

Impact Echo Testing

- Most commonly performed on concrete and concrete overlaid bridge decks
- Can detect delaminations at BOTH the top and bottom rebar mats when testing from the top
- Cannot "see" through debonded overlays
- Not sensitive to rebar or chlorides in concrete (results will often NOT match GPR results)
- Results will generally show larger areas of delamination and incipient delamination compared to chain dragging

Impact Echo Test for Delamination/ Cracking/Thickness of Decks

 $D = bVp/(2^*f)$

Sample Single IE Scanning Line Result

File Edit View Acquisition Analysis Plot IE Scan Functions Microphone Scan Functions SASW Function Help

IE Thickness Plot vs. 100 ft Distance for a scan line on a bridge deck

Time Domain IE Signal at left cursor (Top Plot) and Frequency Domain Echo Depth Resonance=8.3 inches (Bottom Plot)

Overall IE Scanning Result Map from a Bridge Deck – Showing Beams and Deck Areas

Length measured from South End of Approach Slab (ft)

Distance measured from East End of Deck (ft)

SASW Testing

- Most commonly performed on asphalt-overlaid bridge decks
- Can detect delaminations in concrete under asphalt
- Requires accurate asphalt thickness information for best results

Spectral Analysis of Surface Waves Method (SASW)

- Acoustic method measures the propagation speed of surface waves with various wavelengths
- Short wavelength waves sample shallow, longer wavelengths sample deeper
- Allows the measurement of the velocity profile versus depth into the structure, which can be related to the strength and condition of the concrete versus depth

Bridge Deck Scanner with IE/SASW on Cart on Virginia Asphalt Overlaid Deck

Findings – Bonded Asphalt on Sound Concrete

Sound Concrete with Asphalt Debonding

Bonded Asphalt on Concrete with Top Delamination

Debonded Asphalt / Concrete with Bottom Delamination

Ground Truthing - Hydrodemolition to Reveal Delaminations

GPR Testing

- Most commonly performed on concrete and concrete overlaid bridge decks
- Can detect chlorides and areas of likely future corrosion and subsequent delamination
- NOT always sensitive to current cracking and delaminations unless the cracks or delaminations have salts, corrosion products, or other GPR-reflective material present (results will often NOT match IE, IR or Sounding results)
- Can also map out rebar depth and geometry

Description of the GPR Method

Reflection test

- Using electromagnetic waves
- Sending tiny pulse of energy through its antenna
- Reflecting back from different material or anomalies.

A rapid nondestructive testing method

- Ground Contact (single antenna and multiple antennas)
- Air Horn (multiple antennas)

Physical Principle

SHRP2SOLUTIONS | 41

Physical Principle (continued)

Reflection Concept

Physical Principle (continued)

Secondary Heperbolae

GPR, Chain Drag and IE Test Results Comparison

Example Equipment (Ground Contact Antennas)

3D Radar

MALA

Sensors and Software

SHRP2 SOLUTIONS | 45

Example Equipment (Air Horn Antennas)

46

Deterioration Modes Detected By GPR Testing

- Locations with a dielectric contrast between the two materials (indicative of material property changes)
- Large concrete cracks/voids (air filled)
- Smaller gaps/voids filled with salty water larger dialectic contrast
- Corrosion, high chlorides, or rust byproducts indicated by lower amplitude reinforcement reflections due to diffraction by rust byproducts as well as attenuation by chlorides

Performances of GPR Test on Concrete Bridge Decks

- Speed of data collection Rapid and reliable
- Analysis Takes more time and requires a high level of expertise
- Ease of Use Requires significant expertise and training
- Cost Moderate-to-expensive system
- Repeatability Repeatable test
- Accuracy Good (better with ground-coupled antennas)

Limitation of GPR Testing on Bridge Decks

- Detect delaminations only when they are epoxyimpregnated and/or filled with water/salt in decks
- De-icing salts can limit the depth of signal penetration (but this attenuation is used to map high-chloride areas)
- Limited test results cannot provide any information about the mechanical properties of the concrete (strength, modulus, etc.).
- FCC restrictions
- Need validations from other NDE methods or ground truth

Limitations (continued)

- Cannot "see" through dense rebar
- Does not directly detect cracks need "conductive" cracking (waterfilled)
- Depth of air voids can not usually be estimated
- Depth of the penetration depends on the antenna frequency
 - 2600 MHz 12-15 inch max penetration in concrete
 - 1500 MHz 18 inch max penetration in concrete
 - 400 MHz 6 10 foot penetration in concrete

Thank you, and please contact us if you have specific questions about any of these test methods

Indiana Department of Transportation

Ground Penetrating Radar Bridge Deck Testing Randy Strain

- Resource International, Inc. is in the process of completing our first contract of non-destructive bridge deck testing using ground penetrating radar.
- The contract included testing for 230 bridge decks.

• The bridges were selected by the INDOT Bridge Asset Engineers and Bridge Inspection Supervisors.

Bridge deck constructed in 1994 – 25 year old bridge deck Deterioration just over 10%

- In order to obtain a 28 day yield strength of 4000 psi 658 pounds of cement is used in the mix design.
- Indiana is known for its' Indiana Limestone, also know as Bedford Limestone.
- Bedford Indiana has been noted to have the highest quality quarried limestone in the United States.
- Wonderful product for building products.
- Not a great stone for obtaining a high strength concrete.

- It appears that building a bridge deck with an overlay may not provide additional protection to the deck. The shrinkage cracks from the deck seem to extend into the overlay.
- Our best protection with our current mix design is to allow the shrinkage cracks to form and the provide protection with a polymeric concrete bridge deck overlay.
- Designing a concrete mix to overcome the shrinkage cracks increases the cost of the concrete by about four and a half times.

• 41-42-5935 BSBL

- 9.7% highly deteriorated
- 38.2% total deterioration
- 48 year old deck
- 24 year old 2nd overlay
- Structure is programmed to be rehabilitated in 2020. The inspector rated the deck a low 6 by notation and recommend the deck be replaced.

Preliminary statistical findings

- Bridges with approximately 10% deterioration should be considered to be in fair condition.
- Bridges with approximately 10% 20% deterioration may require further testing.
- Bridges with grater than 20% deterioration should be considered in poor condition.

The relation between percent deterioration and percent patching is not a one to one correlation.

This graph is an approximation of the relationship.

When and how often should testing be done?

- The deterioration appears to be minor in bridge decks less than twenty years old
- The deterioration in latex overlays appears to follow very closely to the same time line.
- The bridge inspectors can not accurately determine the condition of the bridge decks by visual inspection. A large amount of the deterioration is simply not visible.
- Using NDT at the appropriate time line can assist in the proper evaluation of the bridge deck.

- INDOT Bridge Inspectors can use the NDT results to more accurately rate bridge decks.
- Percentage of deterioration does not directly correlate to bridge deck patching.
- Ground penetrating radar is a valuable tool for screening bridge decks.
- The correlation of deterioration percentage to patching has not been accurately determined.

- In 2019 we would like to use different methods of NDT and perform quality assurance on the bridge desks tested.
- Perhaps in order to minimize traffic disruption, the touch based NDT might be performed on the bridge deck shoulder then the traffic lanes can be tested at highway speeds.
- Several bridge decks will be followed through the construction contract in order to obtain the correlation between percentage deterioration to bridge deck patching.
- The upper limit of deterioration needs to be identified.

OREGON DOT's PILOT PROJECTS USING NONDESTRUCTIVE **TESTING TECHNIQUES** for **BRIDGE DECK** INSPECTION

Corey Withroe 503 986 3339 corey.r.withroe@odot.state.or.us

Inventory

Structurally Deficient Decks

2059: 1889

Oregon – 2 Grants

- Can we find things the trained eye can't see?
 - Corrosion, delaminations, debonding
- 2. Can we distinguish bridges that need immediate attention from those that can wait 5-10 years?
- 3. Can we reduce costs—deck inspections/ surveys especially?
- 4. Are certain types of bridges responding differently?
 - Thin decks/ overlays/ mag chloride

Non-Destructive Evaluation

Prevailing NDE techniques for concrete bridge decks

- Ground Penetrating Radar (GPR)
- Infrared Thermography (IR)

- Impact Echo (IE)
- Chain Drag

Phase 1 – High Speed

Results – Interstate Bridge

New Youngs Bay

OR58, Salt Creek

OR99, Tualatin River

I-5, Umpqua River

Chain Drag

I-5, Umpqua River

RKW

0.5%

4.5%

delam.

High Speed Infrared:

Finel class 2 Repair:

I-84, Snake River

1986

197 - J

10.0% delam.

Original Questions

- Corrosion, delaminations, debonding
- Yes, but not accurate enough- or cost-effective on a network level. More calibration is needed.

Can show you rebar depths, and where to investigate further.

- 2. Can we distinguish bridges that need immediate attention from those that can wait 5-10 years?
- 2**a**. Yes, and that will be our focus going forward. Less useful in other situations.

Original Questions

- 3. Can reduce costs—deck surveys especially?
- 3a. Won't replace inventory surveys or destructive testing yet—but can give better repair quantities—and save money by limiting change orders.

High-speed techniques may be useful if you absolutely can not close a lane.

- 4. Are certain types of bridges responding differently over time?
 - Thin decks/ overlays/ mag chloride
- 4**a**. Inconclusive, defects correlate between CS2 & CS3
 Less of a focus for us, we'll continue to look at bridges on project basis.

SHRP2 R06A NDT Bridge Decks = primarily GRP

Kathy Crowell, NMDOT Dr. Brad Weldon, NMSU Daniel Diaz, NMSU

special thanks to: Shane Kuhlman, NMDOT State Bridge Engineer Dr. Manuel Celaya, Advanced Infrastructure Design

Agenda

- Introduction
- Start with the end in mind
- Things of interest
- Details / Pretty Pictures
- Conclusions

Why NMSU

Ground Penetrating Radar (GPR) for Concrete Bridge Deck Evaluation

Daniel E. Diaz Dr. Brad D. Weldon

Department of Civil Engineering, New Mexico State University

NEW MEXICO STATE UNIVERSITY

Why GPR

Existing Equipment

Air Coupled (2 Antenna's) Ground Coupled (4 Antenna's, 2/freq.)

2Ghz Frequency

400Mhz and 900Mhz Frequency

NMDOT CURRENT EQUIPMENT- SIR 30

Existing Equipment

start with the end in mind

- At the end of the day, we intended to create a capability that we did not previous have.
- The capability needed to be readily accessible through our bridge inspection contract with NMSU.
- AND:

pretty pictures are required

Things of Interest

- NMDOT does use chlorides (deicing salts)
 but not in the whole state
- Unique and variable deterioration models
- Various and often unintentional overlays

Things of Interest

- \$14M in bridge preservation funds controlled by the State Bridge Engineer
- NMDOT is moving towards condition based prioritization using BrM
- Estimating quantities is not very scientific
 we pay by actual quantity
- Difficulties in correlating preservation scope and budget

Nine Bridges

6134 7113
6840 (bad deck) 7299
6932 8845 (base)
6939 (slab) 8852
7032 (latex overlay + UHPC)

GPR Evaluation Results: Bridge 8845 NMDOT Typical Prestressed Girder

95

- AASHTO Prestressed Girder
- From most current inspection report:
 - Deck: 7
 - Superstructure: 7
 - Substructure: 7
- Deck inspection reports:
 - Isolated transverse and longitudinal cracks up to 1/32" with light leaching (Underside)
 - Transverse and vertical cracks up to 1/16" with light leaching (Deck edges)

- AASHTO Prestressed Girder
- From most current inspection report:
 - Deck: 4
 - Superstructure: 5
 - Substructure: 6
- Deck inspection reports:
 - Transverse and longitudinal cracks up to 1/8" with heavy leaching (deck edges); transverse and longitudinal cracks up to 1/16" with heavy leaching and rust stains near joints

 Reflection amplitudes picks, X and Y location coordinates, and two-way travel time are obtained using Radan 7

GPR Evaluation Results: Excel Processing Bridge 6840

	Α	В	C	D	F	F	G	н	I	1	К	1	M	N	0	Р	0	P
1	Remaining Values					90th Percentile Values				-					_	-		
2	-23.261 67 -33.8 1.453				loc x loc y amp twtt													
3	-22.969	67	-33.13	1.469		52.9327	71	-27.54	1.594	0	1					▲ 90th Pe	centile Value	es 👘
4	111.469	71	-37.36	1.5		33.1322	71	-27.48	1.906									
5	20.6257	71	-29.87	1.516		53.8454	71	-27.47	1.719	-10	-					 Remain Data Co 	ing Values of illected	·
6	-22.51	67	-38.22	1.563		103.305	71	-27.42	1.578			y = -4.	77x - 16.05		-	 Linear (90th Percenti	ile
7	-20.218	67	-40.88	1.625		37.5611	71	-27.31	1.813	20	1					Values)	
8	96.4439	71	-34.45	1.625		21.0602	71	-27.17	1.594	빙 -30			· · · · · · · · · · · · · · · · · · ·	1000	A AND A	Charles and the second		
9	105.041	71	-31.9	1.656		46.8062	3	-27.16	1.828	nde			· · · ·	20.00			-	
.0	112.982	69	-39.63	1.672		46.7175	1	-27.02	1.797	년 1월 -40	-		· •	- T. (1)				
1	104.173	71	-32.36	1.672		36.6495	71	-27.02	1.922	An				A 474		Sec. Sec.		
2	106.648	71	-33.79	1.688		51.196	71	-26.89	1.594	-50	-				247	1 44	10.00	r 🗌
.3	103.261	71	-30.75	1.688		48.6778	71	-26.85	1.672							1 m		
.4	110.99	71	-30.33	1.688		140.908	3	-26.3	1.938	-60							A 1	
.5	100.699	71	-29.23	1.688		49.5029	71	-26.26	1.625	-70						-		
.6	99.831	71	-28.49	1.688		50.3708	71	-26.1	1.531	-10	ò	1		2		3		4
17	102.479	71	-28.43	1.688		52.0649	71	-25.91	1.547				Two	-way travel t	time (ns)			
8	47.1052	1	-27.94	1.688		-24.386	67	-25.47	1.906	L								
.9	108.386	71	-33.62	1.703		116.158	71	-25.29	1.734	50								<u> </u>
20	95.575	71	-30.99	1.719		104.837	5	-28.33	2.313	50					•	90th Percer	ttile Values	
21	105.867	71	-30.99	1.719		85.1171	3	-28.33	2.375	40						Remaining	Values of Da	ata 🔤
22	111.772	71	-32.27	1.734		68.9948	69	-28.31	2.094	30						Collected		_
23	112.635	69	-37.24	1.75		73.177	3	-28.29	2.297	20						Linear (90t	h Percentile	
24	99.0496	71	-32.42	1.75		-4.27	17	-28.29	2.297	- E 10						Values)		
25	4.99363	71	-29.59	1.75		67.9803	3	-28.29	2.328	- and -		3	r = 0.00x + 0.	00			A.u. A	
26	5.90526	71	-29.5	1.75		3.46754	5	-28.28	2.484	1 <u></u>		-					and the second	
27	101.612	71	-29.5	1.75		130.148	23	-28.28	2.5	g -10				A				Δ 🗌
28	47.8526	71	-28.24	1.75		77.8223	5	-28.27	2.234	-20				7.94	122.00	Section 200		* L
29	114.335	71	-31.76	1.766		111.328	7	-28.27	2.484	-30						1 an 1	1 × 1	
30	112.641	71	-31.62	1.766		18.0107	5	-28.27	2.5									. 🗆
31	97.2253	71	-29.9	1.766		11.4285	31	-28.27	2.5	-40						· · ·	-	• 🗆
32	140.092	3	-32.17	1.781		74.0364	3	-28.23	2.266	-50				2		2		그 브
33	107.561	71	-32.16	1.781		69.2948	1	-28.22	2.328	. '	,	1	Tree	ک فاحد جنوب	ima (ne)	2		1
84	-20.843	67	-36.26	1.797		67.1642	3	-28.21	2.375				100-	way uavert	ime (ii5)			
25	120 702	3	-36 21	1 707		64 1239	1	-28.2	2 109	L								

– Information obtained from Radan 7 exported to Excel for further processing

101

GPR Evaluation Results: Bridge 6939 (slab)

- Concrete Slab Bridge Asphalt Overlay
- From most current inspection report:
 - Deck: 5
 - Superstructure: 5
 - Substructure: 6
- Deck inspection reports:
 - Vertical, horizontal, transverse and map cracks up to 1/4" (deck edges); transverse and map cracks up to 1/16", areas of moderate leaching, and spalls up to 6" by 5" (Underside)

104

"Normal Deck"

 It works to help determine whether a deck is a preservation candidate verses replacement.

"Slab Deck"

Good as first pass

 Second pass (more detailed) really necessary as DEPTH of the areas of concern is critical to decision / quantity

Overlay

- Seems to work in "seeing through" asphalt
- Seems to work with "seeing through" epoxy overlay (by extension, will likely work with polyester overlay)

 Does NOT seem to work with latex modified overlay

Successful Project

- We learned a lot
- We developed a capability that we did not previous have (implementation)
- Research value, published research, and developed engineering talent
Executive Summary

GPR is not the magic bullet

But it has value when applied appropriately

Decision must be project specific (bridge type, data need)

New Mexico DOT

Kathy Crowell Bridge Design Manager <u>Kathy.crowell@state.nm.us</u> 505-470-5663

Presenter Contacts

Hoda Azari, Ph.D. Federal Highway Administration hoda.azari@dot.gov 202-493-3064

Dennis Sack Olson Engineering <u>dennis.sack@olsonengineering.com</u> 303-423-1212 Randy Strain Indiana DOT <u>rstrain@att.net</u>

Corey Withroe Oregon DOT <u>corey.r.withroe@odot.state.or.us</u> 503-986-3339

Kathy Crowell New Mexico DOT Kathy.crowell@state.nm.us 505-470-5663

