

Review of the SHRP R06C Deployment Results

Peer Exchange Meeting

Lev Khazanovich, University of Pittsburgh

Kyle Hoegh and Shongtao Dai, MnDOT

October 25, 2017

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

SHRP2 at a Glance

- SHRP2 Solutions 63 products
- Solution Development processes, software, testing procedures, and specifications
- Field Testing refined in the field
- Implementation More than 430 transportation projects; adopt as standard practice

SHRP2 Education Connection – connecting next-generation professionals with next-generation innovations

SHRP2 R06C

REPORT 52-R06C-RR-1

Using Infrared and High-Speed Ground-Penetrating Radar for Uniformity Measurements on New HMA Layers

SHRP2 RENEWAL RESEARCH

SHRP2 R06C Implementation

• Objectives:

- Evaluate RDM equipment
- Make recommendation for feasibility of implementation
- Provide support to states in implementing RDM
- Partnership
 - FHWA, AASHTO, CH2M Hill, and ARA
 - GSSI, Inc.
 - University of Minnesota
 - MnDOT, Maine DOT, and Nebraska DOT
- Field Trials
 - Maine
 - Nebraska
 - Minnesota

Rolling Density Meter

Test Protocol

Survey Setup

- General survey considerations
- Survey types
- Survey distance
- Survey Data Collection
 - RDM data collection
 - Core data collection
- Data Processing
 - Exporting data
 - Air void vs Dielectric Calibration
- Data Analysis and Applications

- 500 ft survey recommended
- Makes data entry easier
- Limits user input and processing errors
- Any data loss is limited to 500 ft
- Minimizes walking distance when returning for cores
- Small section allows RDM survey to stay close to paving crew during moving operations

Survey Methods: Survey

Lane pass survey:

The center sensor is offset 6ft from the longitudinal joint

Swerve survey:

The center sensor is offset 6ft from the longitudinal joint and the cart is swerved

Survey Data File: File Root Name

- TH 52 near Zumbrota, Minnesota
- HWY 2 in Lincoln, Nebraska
- US-1 near Cherryfield, Maine
- State Rte 9 near Clifton, Maine
- I-95 near Pittsfield, Maine
- TH 14 near Eyota, Minnesota

SHRP2 SOLUTIONS | 11

~7 miles M&O: Mill 1.5" and overlay 2x1.5" 4 Test Sections (FHWA/AASHTO funding) A Test Sections (FHWA/AASHTO funding) No added binder + 4 rollers (control) Added binder (+0.5%) + 4 rollers No added binder + 5 rollers Added binder (+0.5%) + 5 roller

The entire 7 mile project was scanned

MN Project TH52

Asphalt binder content: 5.2%; 4 roller passes

Asphalt binder content: 5.2%; 4 roller passes

Non-wear lift

Wear lift

Asphalt binder content: 5.7%; 4 roller passes

DLUTIONS | 14

Asphalt binder content: 5.7%; 5 roller passes

US Route 1 Cherryfield, Maine

- July 13th, 2016
- 1.25-in HMA overlay
- 3 non-consecutive 500-ft sections
- Fast moving lane closure
- 5 cores were collected

US Route 1 Cherryfield, Maine

OLUTIONS | 19

US Route 1 Cherryfield, Maine

HWY 2 in Lincoln, Nebraska

- 1.5-in HMA overlay
- 1000 ft of pavement
- Night time testing
- 8 cores collected

HWY 2 in Lincoln, Nebraska

HWY 2 in Lincoln, Nebraska

| 23

MN Project TH14

~12 miles

- M&O: Mill 2" and overlay 2" and 1.5"
- 6 Test Sections:
 - ³/₄" mix + 3 rollers (control)
 - ³⁄₄" mix + 4 rollers
 - ½" mix + 3 rollers
 - $\frac{1}{2}$ " mix + 4 rollers
 - $\frac{1}{2}$ " mix (Evotherm) + 3 rollers
 - ³⁄₄" mix (Evotherm) + 3 rollers

P2SOLUTIONS | 25

All sections

Field Testing – Lessons Learned

- The current version of RDM is an implementationready device
 - Easy to operate
 - Can operate continuously for 6-8 hours
- Day and night testing was conducted without interfering with paving or delaying moving closure
- RDM is capable of providing real time assessment of in-place compaction uniformity
- Good dielectric air void correlations were obtained for the majority of the projects
- Good core data collection protocol is a key

Calibration Improvements

Dai and Hoegh Model

$$AV = exp\left(-B\left(D\left|\frac{1}{e-C} - \frac{1}{1-C}\right| - 1\right)\right)$$

LUTIONS 29

Calibration Improvements

Conventional model

Dai and Hoegh model