

Service Life – Testing & Documentation

Workshop W05 - International Bridge Conference

Mike Bartholomew, P.E. Technology Director, North American Bridges, CH2M

June 7, 2016

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Discussion Topics

- Introduction
- Design Issues
 - Environmental Loading
 - Material Properties / Component Dimensions
- Construction Monitoring & Testing Issues
 - Concrete Tests for Durability
 - Concrete Cover Dimension Verification
- In-Service Issues
 - Verification of Actual Performance vs. Planned Performance
- Birth Certificate Documentation
- Summary

- Owners are specifying Service Life Design, particularly for projects using alternative project delivery
 - Design-Build (DB)
 - Design-Build-Operate-Maintain (DBOM)
 - Public Private Partnership (P3)
- Service Life Design is not just about design for durability
- It's about management of durability issues throughout the life of the structure
- Designers & Contractors need to be aware of new design, construction, and operations requirements

Through-Life Stages

Condition

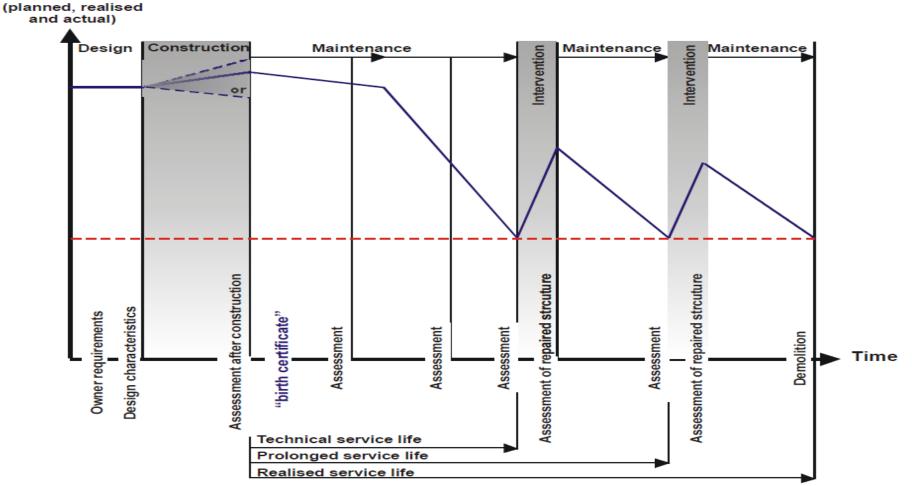


Fig. 2-1: Complete service life from birth to death, adapted from [28]

Example Deterioration Model

 Chloride Ingress – Fick's 2nd Law of Diffusion to Corrosion Initiation

$$\begin{split} C_{\text{crit}} \geq C(x = a, t) &= \mathbf{C_o} + (\mathbf{C_{s,\Delta x}} - \mathbf{C_o}) \cdot \left[1 - \text{erf}\left(\frac{a - \Delta x}{2\sqrt{D_{app,C} \cdot t}}\right)\right] \\ D_{app,C} &= k_e \cdot \mathbf{D_{RCM,0}} \cdot k_t \cdot A(t) \\ k_e &= \exp\left(b_e\left(\frac{1}{T_{\text{ref}}} + \frac{1}{T_{\text{real}}}\right)\right) \quad A(t) = \left(\frac{t_o}{t}\right)^{\alpha} \end{split}$$

- Red Environmental Loading
 - C_o & C_s are the <u>Chloride Background and Surface Concentrations</u>
 - T_{real} is the annual mean <u>Temperature at the project site</u>
- Green Material Resistance
 - $D_{RCM,0}$ is the <u>Chloride Migration Coefficient</u>, α is the <u>Aging Exponent</u>, both are functions of the concrete mix
 - a is the Concrete Cover

New Design Issues

- Environmental exposure of coastal marine bridges
 - Chloride loading (C_s) based on natural salinity of sea water
 - Data collected from existing documentation or perform salinity tests
- Environmental exposure from de-lcing chemicals
 - Chloride loading (C_s) much more difficult to assess
 - Best source of data is from test coring existing structures in similar environment

New Design Issues

- Deterioration other than from chlorides
- Environmental exposure from Carbonation (CO₂)

- $-CO_2$ (C_s) concentration from the atmosphere (known)
- Data collected for CO₂ concentration from emission sources in industrial areas

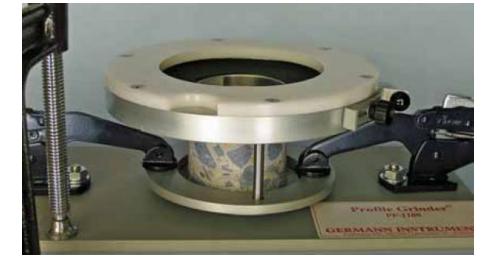
Determining Chloride Loading

Standard Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding¹

- Known as the Salt Ponding Test
- Used to develop chloride profiles in test specimens or existing concrete taken from cores
- Results include Surface Chloride Concentration (C_s) and Concrete Apparent Coefficient of Diffusion (D_{app,C}) at age of core

Determining Chloride Loading

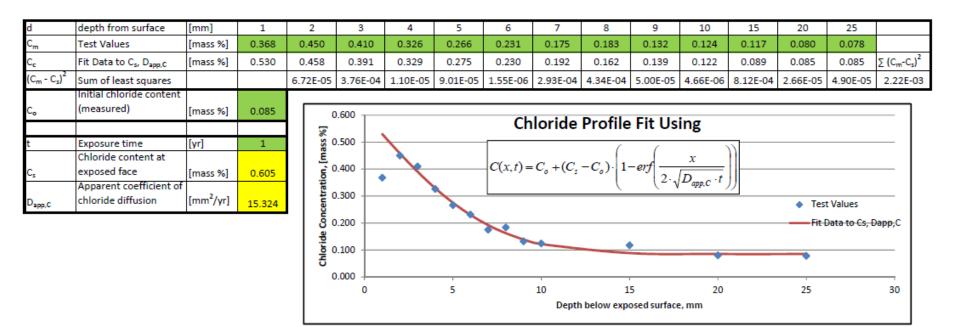
nordtest method


NT BUILD 443 Approved 1995–11

Concrete Hardened: Accelerated Chloride Penetration

- Known as the Bulk DiffusionTest
- Used to develop chloride profiles in test specimens or existing concrete taken from cores
- Results include Surface Chloride Concentration (C_s) and Concrete Apparent Coefficient of Diffusion (D_{app,C}) at age of core

Chloride Profile Grinding


Source: Germann Instruments

Determining Chloride Loading

Designation: C 1556 – 04

Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion¹

- Resistance to Chloride Ingress by Diffusion is a function of the:
 - Concrete Chloride Migration Coefficient (D_{RCM,0})
 - Cover Depth (a)
- Resistance to Carbonation is a function of the:
 - Inverse Carbonation Resistance ($R_{ACC,0}^{-1}$)
 - Cover Depth

New Design/Construction Issues

- Resistance to both Chloride Ingress and Carbonation influenced by concrete mix proportions:
 - Type of Cement
 - Water/Cement Ratio
 - Supplemental Cementitious Materials
 - Fly Ash (FA)
 - Ground Granulated Blast Furnace Slag (GGBFS)
 - Silica Fume (SF)

Chloride Migration Test NT Build 492

nordtest method

NT BUILD 492

Approved 1999-11

- Chloride Migration Coefficient from Non-Steady State Migration Experiments
 - Known as the Rapid Chloride Migration (RCM) Test
 - Determines Concrete Chloride Migration Coefficient,
 D_{RCM,0} used directly in fib Bulletin 34 deterioration model
 - 28 day cure, test duration usually 24 hours

NT Build 492 – Test Setup


NT Build 492

Schematic Test Setup

NORDTEST METHOD

 4" diameter x 2" thick specimen sliced from concrete test cylinder

- 10% Solution of NaCl in water
- Subjected to electrical current to accelerate chloride ingress

NT BUILD 492 5

NT Build 492

- Split specimen axially into 2 pieces
- Spray silver nitrate solution on broken surface
- Measure chloride penetration depth
- Calculate Chloride Migration Coefficient, D_{RCM,0}

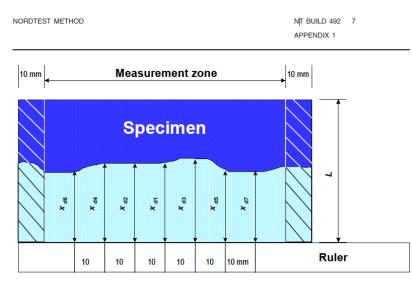


Fig. 5. Illustration of measurement for chloride penetration depths.

NT Build 492 Test Summary

- Important to perform test at 28 days
- Test takes 24 hours
- One test includes 3 specimens
- Cost of a single test is approximately \$1,000

Other Rapid Chloride Tests

- The RCM Test (NT Build 492) is not to be confused with:
 - ASTM C1202/AASHTO T 277 Standard Test
 Method for Electrical Indication of Concrete's Ability to
 Resist Chloride Ion Penetration
 - AASHTO TP-64 Predicting Chloride Penetration of Hydraulic Cement Concrete by the Rapid Migration Procedure

- Known as the Rapid Chloride Permeability Test (RCPT)
- Measures electrical charge (Coulombs) passed through concrete specimen
- Specimens are not split/measured for chloride depth

ASTM C1202 Results

• Qualitative not Quantitative

Table: Chloride Permeability Based on Charge Passed

Charge Passed (Coulombs)	Chloride Permeability	Typical of		
>4,000	High	High W/C ratio (>0.60) conventional PCC		
2,000–4,000	Moderate	Moderate W/C ratio (0.40–0.50) conventional PCC		
1,000–2,000	Low	Low W/C ratio (<0.40) conventional PCC		
100-1,000	Very Low	Latex-modified concrete or internally-sealed concrete		
<100	Negligible	Polymer-impregnated concrete, Polymer concrete		

Source: Grace Technical Bulletin TB-0100

- Test procedures appear similar to NT Build 492, but there are subtle differences
- Uses different
 - Duration of test (18 hours)
 - Preconditioning
 - Temperature
 - Voltage
- fib Bulletin 34 calibrated to NT Build 492 only

- Accelerated Carbonation Test (ACC) DARTS <u>D</u>urable <u>And Reliable Tunnel Structures</u>: Deterioration Modelling, 2004
 - Documented in *fib* Bulletin 34, pages 50-53
 - Specimens cured 28 days in water
 - Placed in carbonation chamber for 28 days and exposed to CO2 concentration of Cs = 2.0 vol.-%
 - Tests performed at 56 days
 - Specimens split, exposed surfaces treated with phenolphthalein and measured for penetration depth
 - Inverse Carbonation Resistance $(R_{ACC,0}^{-1})$ is calculated

Carbonation Test Chamber

Carbonation Tests

• Sample showing carbonated concrete in purple

Concrete Cover Depth

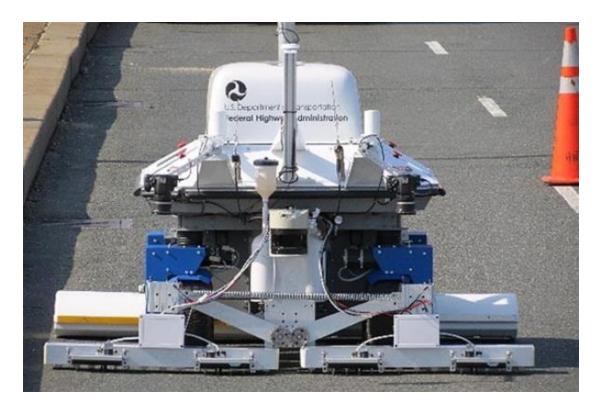
- Lack of U.S. standards for measuring cover depth in hardened concrete
- Service Life goal is for complete mapping – Min/Max Depths
 - Used to Calculate Mean & Standard Deviations
- International Standard
 - British Standard 1881-204:1988 Testing Concrete. Recommendations on the use of electromagnetic covermeters

Covermeters

• Sources: Proceq

Elcometer

Concrete Cover Depth


- New Hampshire DOT 2010 Standard Specifications
 - Section 520.3.1.6.3.6 Concrete Cover
 - "Concrete cover over reinforcing steel will be evaluated by the Bureau of Materials and Research.

"Concrete cover will be determined with a GSSI SIR2 radar rebar depth measuring unit."

Concrete Cover Depth

• FHWA's <u>Robotic Assisted Bridge Inspection Tool</u> (RABIT) with Ground Penetrating Radar (GPR)

In Service Issues

- Monitoring actual performance vs. design
- Sampling structure for Chloride Ingress
 - Chloride Profiling to ASTM C1543 & C1556 or NT Build 443
 - NT Build 492 not used (Test only meant for testing new concrete)
- Sampling structure for carbonation
 - Can use same testing procedure as for Accelerated Carbonation Test (ACC), but eliminating the carbonation chamber exposure

- Monitoring tests are often destructive (taking cores)
- Alternative to coring is to cast additional test specimens and store on project site in same environmental exposure
- Frequency of testing suggest 10-20 year intervals

Documentation

- Design
 - Tests to be performed
 - Material durability & geometric design properties
- As-Built Construction
 - Achieved material durability & geometric properties
- In-Service
 - Measured performance

Birth Certificate Definition

 A <u>document</u>, report or technical file (depending on the size and complexity of the structure concerned) containing engineering information formally defining the form and the condition of the structure after construction.

fib Model Code for Concrete Structures 2010

Birth Certificate Purpose

- Documents parameters important to the durability & service life of the structure
- Provides means of comparing actual behavior/performance vs. design
- Facilitates ongoing (through-life) evaluation of the service life

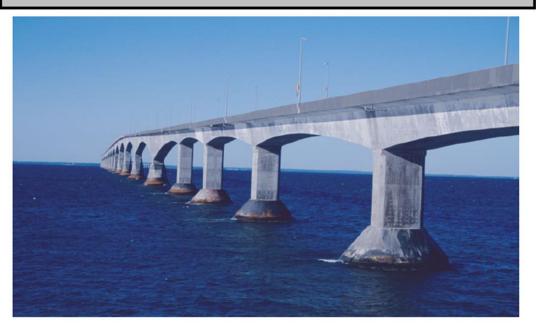
Birth Certificate Purpose

- Outlines an operational schedule for:
 - Routine maintenance
 - Regular inspections
 - Durability performance monitoring
 - Replacement activities
- Similar to an automobile Owner's Manual
- Identifies potential demolition schemes

Birth Certificate Process

- Initially developed during design phase
 - Records the intended design
- Updated at completion of construction
 - As-Built material properties and test results
 - Concrete Classes/Mix Designs
 - Steel Reinforcement/Prestressing Grades
 - Chloride Migration Coefficient
 - Cover Dimensions
- Updated after maintenance, inspection & long term performance monitoring

Birth Certificate Table of Contents

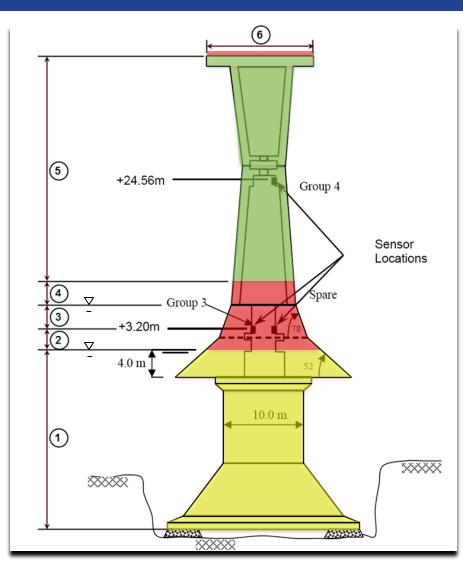


- Asset identification & description
- Design & construction parameters
- Environmental exposure conditions
- Deterioration mechanisms & models
- Testing requirements
- Structure & replaceable element data
- In-service conservation plan
- Dismantling plan

BC Asset Identification

Identification of Asset

Owner	Public Works and Government Services Canada				
Structure Classification	Bridge				
Structure Name	Confederation Bridge (or Fixed Link)				
Inventory ID #	XXX				
Structure Description	11.6 m wide by 12.9 km long precast, post-tensioned segmental concrete structure with West and East Approaches and a Main Bridge Unit. Typical spans are 93 m for the Approaches and 250 m for the Main Bridge Unit.				
Geographic Location	Carries NB 16/PEI 1 (Trans-Canada Highway) over Northumberland Straits between Borden–Carleton, PEI and Cape Jourimain, NB				
Date Placed in Service	31-May-1997				


BC Design/Construction Parameters

Design Parameters		
Consequence Class (CC) of	CC3 - High consequence for loss of human life,	(Table A2-1 of MC-SLD)
Failure or Malfunction	or economic, social or environmental	
	consequences very great	
Design Supervision Level (DSL)	DSL3 - Extended Supervision (Third party	(Table A4-1 of MC-SLD)
	checking: Checking performed by an	
	organisation different to that which has	
	performed the design)	
Service Life Design Strategy /	Strategy B - Providing resistance to the	
	deterioration mechanisms active in the service	
	environment	
Methodology	Method B4. A reliability-based methodology	
	(Full probabilistic design)	
Primary Protection Strategies	Material's own resistance	
	Basic resistance using a single protection	
	strategy	
Durability Limit State (DLS)	DLS1 - Depassivation of reinforcing	
Target Service Life	100 years	

BC Environmental Parameters

Environmental Parameters					
Macro-Environment	Coastal Marine				
Macro-Climate	Cold				
Mean High Temperature	28 °C	CHBDC CAN/CSA S6-88			
Mean Low Temperature	-28 °C	"			
Mean Relative Humidity	80%	"			
Deterioration Mechanisms	Chloride Ingress				
	Freeze-Thaw				
	Ice Abrasion				
Exposure Classes	XS: Corrosion of reinforcement induced by	(EN 206-1)			
	chlorides from sea water				
	XD: Corrosion of reinforcement induced by				
	chlorides other than from sea water				
	XF: Freeze - thaw attack upon concrete				

BC Environmental Parameters

Component	Figure ID	Exposure Class (EN206)
Substructure		
Submerged Zone	1	XS2
Tidal Zone	2	XS3
Splash Zone	3	XS3
Spray Zone	4	XS3
Atmospheric Zone	5	XS1
Superstructure		
Atmospheric Zone	5	XS1
Roadway & Traffic Barrier	6	XD3

BC Deterioration Models

BIRTH CERTIFICATE DOCUMENT Deterioration Mechanisms & Models

Inventory ID Structure Name Deterioration Mechanism Chloride ingress Deterioration Model Source

X10625

Hwy. 5 Overcrossing Hwy. 12 Fick's 2nd Law fib Bulletin 34 - Model Code for Service Life Design

$$C_{crit} = C(x = cov, t) = C_{o} + (C_{s, \Delta x} - C_{o}) \cdot \left(1 - erf\left(\frac{cov - \Delta x}{2 \cdot \sqrt{D_{app, C} \cdot t}}\right)\right)$$

Function Variables Description Units

t x	Time Depth with corresponding content of chlorides $C(x,t)$	[yr] [mm]
C _{crit}	Critical chloride content	[wt%/c]
Co	Initial chloride content of the concrete	[wt%/c]
C _{s,∆x}	Chloride concentration at surface or a depth Δx	[wt%/c]
Δx	Depth of the convection zone (concrete layer, up to which the process of chloride penetration differs from Fick's 2nd law of diffusion)	[mm]
cov D _{app,C}	Concrete cover Apparent coefficient of chloride diffusion through concrete	[mm] [mm ² /yr]

BC Structure Component Data

Inventory ID

Location

Structure Name

Component Name

Deterioration Model

6 XXX Confederation Bridge (or Fixed Lin Pier #20 Fick's 2nd Law 5 +24.56m Group 4 Sensor Locations 4 inare Group 3 3 +3.20m 4.0 m 10.0 m 1 333332

		Exposure		osure	Concrete			Reinforcing Steel			
Sub-Component	Figure ID	Status	Class	C _{a.} [kg/m³]	Class/ Grade [MPa]	C. [kg/m³]	D.,,,.c [mm²/yr]	Type/ Grade	cov (mm)	C _{wa} [kg/m³]	Remaining Service Life (yrs)
Ice Shield, splash zone	3	Design	XS3	17.7	HPC/55	0	15.1	Plain/400	100	1.59	115
		As-Built	XS3	17.7	HPC/55	0.085	15.324	Plain/400	95	1.59	100
		In-Service									
		#1 (10 yr)	XS3	17.04	HPC/55	0.05	15.7	Plain/400	95	1.59	99

Inspection & Monitoring Plan

- Initial (End of Construction)
 - Birth Certificate documentation
- Routine inspections (current ~ 2 yrs)
- Special inspections (Scour, FCM)
- Damage (EQ, Flood, Fire, Collision)
- In-depth monitoring (~ 10-20 yr)
 - Chloride penetration tests
 - Depth of Carbonation tests

BC Maintenance Schedule

Structure Name	Confederation Bridge (or Fixed Link)		Initials		
Inventory ID #	XXX		Actual Date		
Geographic Location	Carries NB 16/PEI 1 (Trans-Canada Highway) over Northumberland Straits between Borden–Carleton, PEI and Cape Jourimain, NB		Sched. Date	31-Aug-97	3-Mar-98
Date Placed in Service	31-May-97	A s	۲r		
		1-			
Routine Maintenance Action	Location/Component	Frequency	2	\vdash	
Clean / Clear					
Sweep roadway deck surface		6 months			
Clear bridge deck drains		6 months			
Flush drainage piping		6 months			
Pressure wash		1 year			
Clean abutment seats		1 year			

Questions?

Patricia Bush

AASHTO Program Manager for Engineering phutton@aashto.org

Subject Matter Expert Team:

Mike Bartholomew CH2M mike.bartholomew@ch2m.com

Anne-Marie Langlois

COWI North America amln@cowi.com

Additional Resources:

AASHTO SHRP2 R19A Website:

http://shrp2.transportation.org/Pages/Service LifeDesignforBridges.aspx

FHWA GoSHRP2 Website:

www.fhwa.dot.gov/GoSHRP2/