

Concept to Countermeasure – Research to Deployment Using the SHRP2 Safety Databases

July 29, 2014

Sandra Larson

Bureau Director
Systems Operations
Iowa DOT

Today's Presentation

- Brief Overview of SHRP2 Program
- New SHRP2 Safety Database
 - NDS: Naturalistic Driving Study
 - RID: Roadway Information Database
- Implementation Assistance Program
- Challenges & Potential Benefits in Iowa
- Data Access & Availability
- Lessons Learned for Data Use

What is SHRP2?

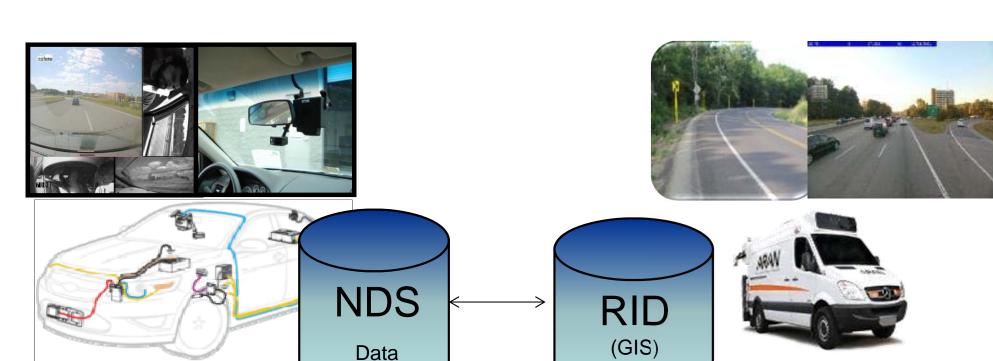
Save lives. Save money. Save time.

 Over \$230 million, federally funded research program to address critical transportation challenges:

- Making highways safer
- Fixing deteriorating infrastructure
- Reducing congestion

- Implementation phase underway by FHWA and AASHTO
- Innovative systematic advancements to plan, renew, operate, and improve safety on the Nation's highways

Who will benefit?


- Motorists
- State/local transportation agencies
- Metropolitan Planning Organizations
- Highway designers, suppliers, and construction contractors
- Freight industry
- Environmental agencies
- Communities and businesses
- Emergency medical services
- Railroads

Four Focus Areas

- Safety: fostering safer driving through analysis of driver, roadway, and vehicle factors in crashes, near crashes, and ordinary driving
- Rapid Renewal: meeting the challenge to get in, get out, and stay out
- Travel-Time Reliability: providing reliable travel times by preventing and reducing non-recurring congestion
- Capacity: systematically delivering highway projects that meet community, environmental, and economic goals

Naturalistic Driving Study & Roadway **Information Databases**

Data from 3,147 volunteer drivers and their vehicles in six sites using passenger cars, vans, SUVs, pickups

New data collected 12,500 centerline miles consistent across six sites Acquired data (DOTs, others) on 200,000 centerline miles with varying conditions - roadway, weather, traffic .. 6

NDS Study Design

- Largest naturalistic driving study ever undertaken
 - 3,147 drivers, all age/gender groups.
 - 3,958 data years; 5 M trip files; 49.7 M vehicle miles
 - 3 years of data collection
 - Most participants 1 to 2 years
 - Vehicle types: All light vehicles
 - Passenger Cars
 - Minivans
 - SUVs
 - Pickup Trucks
 - Six data collection sites
 - Second by second data on what happens in vehicle

Naturalistic Driving Studies

Instruments volunteer drivers' vehicles and collects data continuously during their normal driving

- What do drivers really do?
- What were they doing just before they crashed?
- How did they avoid a crash?
- How do the roadway, vehicle, and environment impact driving?

SHRP2 NDS data will be used for 20 years or more

Camera Image Samples

•15 Hz continuous video

Driver Face – Rotated for max pixel efficiency

€ateme

Right-Rear View

Center stack – Pedal Interactions

Periodic still cabin image, permanently blurred for passenger anonymity

What's in the NDS Data?

- Driver demographics, assessments
- Vehicle descriptors

TRIP DATA

- Multiple Videos
- Machine Vision
- Accelerometer Data (3 axis)
- Rate Sensors (3 axis)
- GPS
- Forward Radar
- Cell Phone Records

- Passive Alcohol Sensor
- Illuminance sensor
- Infrared illumination
- Incident push button
- Turn signals
- Vehicle network data

RID Data Overview

Roadway Information database (RID) will be linked to the NDS data by December 2014

- Four data sources
 - ESRI
 - State roadway inventory data
 - Mobile van data
 - Supplemental data
- Will provide state departments of transportation, researchers, and others with powerful data sets
 - Will allow for driver behavior to be associated with physical environment

Benefits to States Using SHRP2 Safety Data

- Can lead to practical measures that reduce crashes and achieve safety targets
- Let's us understand how drivers interact with vehicles and the roadway
- Can lead to life-saving improvements
 - Development and deployment of new safety countermeasures
 - Updating current design guides and associated practices
 - Driver training programs
 - Vehicle design
 - Infrastructure improvements
 - Public policy and enforcement
 - New approaches to Public Safety Campaigns

Implementation Assistance Program (IAP)

Main Objectives

- Demonstrate use of the SHRP2 Safety Data
- Increase states' understanding of its potential
- Identify countermeasures
- Reduce crashes and save lives!

Safety IAP Process

Phase I - Proof of Concept with a sample reduced data set, January – September 2015 timetable

Decision

Phase II full data set and in-depth research and analysis with countermeasure identification

Decision

Phase III – Deployment, to adopt, champion or implement countermeasure nationally

Key Dates and Selection

- 30 applications were submitted
- Safety Task Force made up of state DOT/AASHTO representatives along with FHWA – are reviewing the applications
- Selections: August 2014
- Expected Phase I start date:
 January 2015
- Phase I complete: September
 2015

Iowa DOT Involvement in Safety

Iowa DOT and Center for Transportation Research and Education (CTRE) have participated in multiple SHRP2 safety projects

- Lane departure crashes (S01-E)
- Identifying Appropriate Analysis methods for NDS (S02)
- Developing the RID (S04-A)
- Also participated in S08-D project: Rural Curves

Used NDS and roadway inventory data for all projects

Iowa's Round 4 Application

- Proof of Concept Proposal
- Builds on work Iowa undertook in TRB Pilot Phase
- Asks: Which driver and roadway characteristics play the most significant role in road departure crashes and safety critical events?
- Analysis of approximately 410 crash/near-crash road departures from database specifically to assess road design
- Example: the odds of a right-lane departure are 2 times higher in the absence of edge line rumble strips.

Questions

For more information: Sandra Larson

Systems Operations Bureau Director, Iowa DOT 515-239-1205

sandra.larson@dot.iowa.gov

Aladdin Barkawi

FHWA Safety Implementation Lead

Aladdin.Barkawi@dot.gov

Kelly Hardy

AASHTO Safety Implementation Lead

KHardy@aashto.org