

Rapid Technologies to Enhance Quality Control on Asphalt Pavements Ground Penetrating Radar (GPR) Rolling Density Meter (RDM)

FHWA/AASHTO Hosted Webinar

March 8, 2018

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Purpose of Today's Webinar

- Provide an overview of SHRP R06C RDM technology project.
- Discuss the value added by using RDM technology (what it is, why should you care, how it affects your bottom line, and how you get there).
- Illustrate RDM use in day-to-day practice.
- Present a summary of the results from the field demonstration projects in terms of its day-to-day application.
- Discuss the benefits from the RDM technology as related to improvement of uniformity of compaction density.

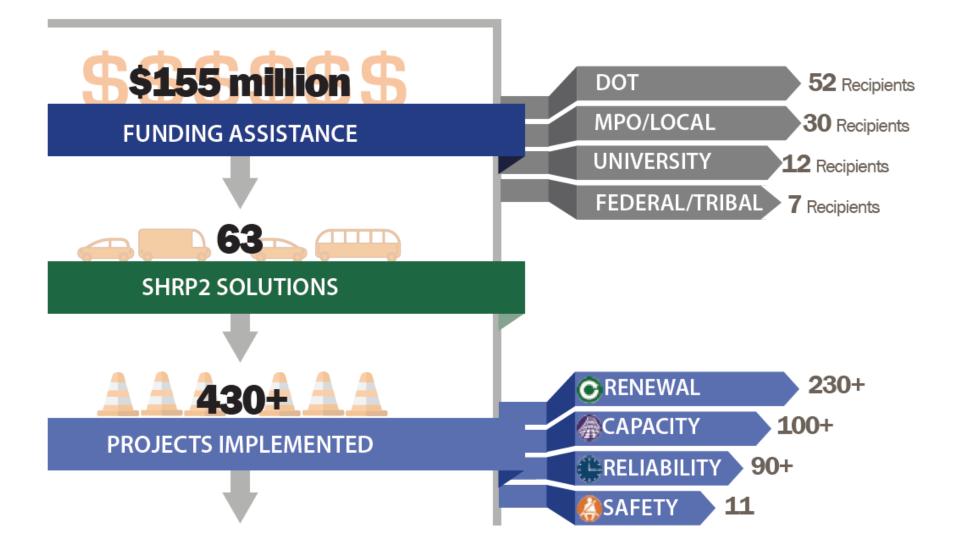
A Few Housekeeping Details

- Tell us what you think. We want to hear from all of you on the call during the discussion segments.
- Please add your comments and questions throughout the webinar to the chat box provided.

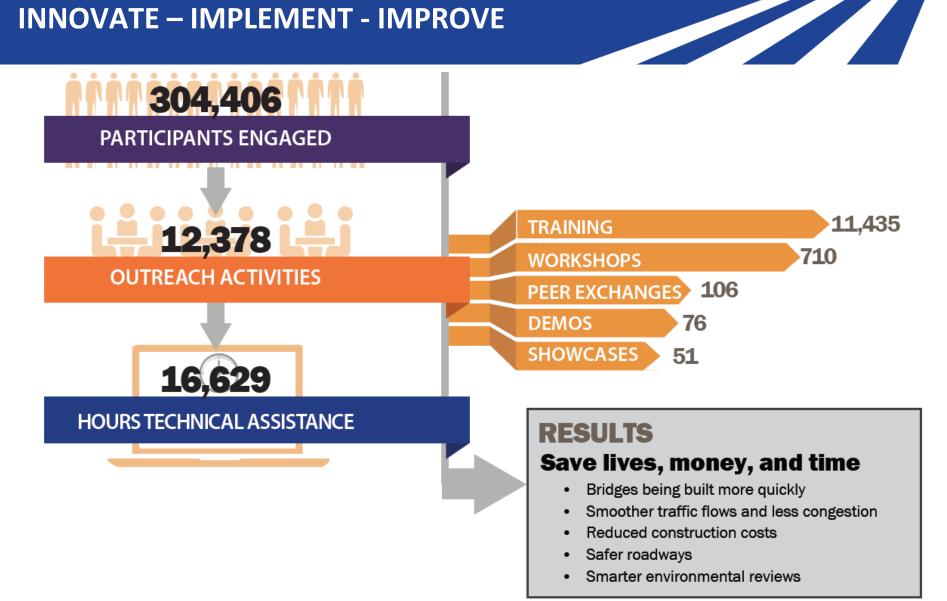
Agenda

- Welcome and Introduction
- SHRP2 Overview AASHTO
- SHRP2 R06C GPR Product Overview FHWA
- GPR and RDM Technology GSSI
- Results of R06C Implementation Lev Khazanovich
- Application and Benefits from RDM Users
 - Minnesota DOT
 - TTI
 - Alaska DOT&PF
- Questions and Discussion

Presenters


- Roger Roberts, GSSI
- Curt Turgeon, Kyle Hoegh and Shongtao Dai, Minnesota DOT
- Stephen Sebesta and Bryan Wilson, TTI
- Rich Giessel, Alaska DOT&PF

Moderators


- Kate Kurgan, Moderator/ R06C Product Lead, AASHTO
- Steve Cooper/ R06C Product Lead, FHWA
- Lev Khazanovich, Subject Matter Expert

Recorded presentation will be posted on the AASHTO SHRP2 website: http://shrp2.transportation.org/Pages/R06C_RapidTechnologiestoEnhan ceQualityControl.aspx

SHRP2 Implementation: INNOVATE – IMPLEMENT - IMPROVE

SHRP2 Implementation: INNOVATE – IMPLEMENT - IMPROVE

R06C Technologies to Enhance QC on Asphalt Pavements

THE CHALLENGE: Develop solutions to measure and quantify non-uniformity of asphalt mixture construction

Increased use of night paving makes inspection more difficult

Localized non-uniform areas fail prematurely. Random testing seldom catches problem

R06C - Technologies to Enhance QC on Asphalt Pavements

Thermal Profile during Placement: Pave-IR

Density uniformity and compaction: GPR Rolling Density Meter

PaveScan RDM

SHRP2 Implementation Task Force Meeting

March 8, 2018

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

PaveScan RDM – What is it?

It is a complete GPR system providing:

- Real-time dielectric values of compacted asphalt
- Full Coverage (lane width and length)
- Automatically located core locations
- Compaction information on-site (after core calibration)
- Export to CSV and Google Earth KML files

PaveScan RDM – Configurations

1-Channel Configuration

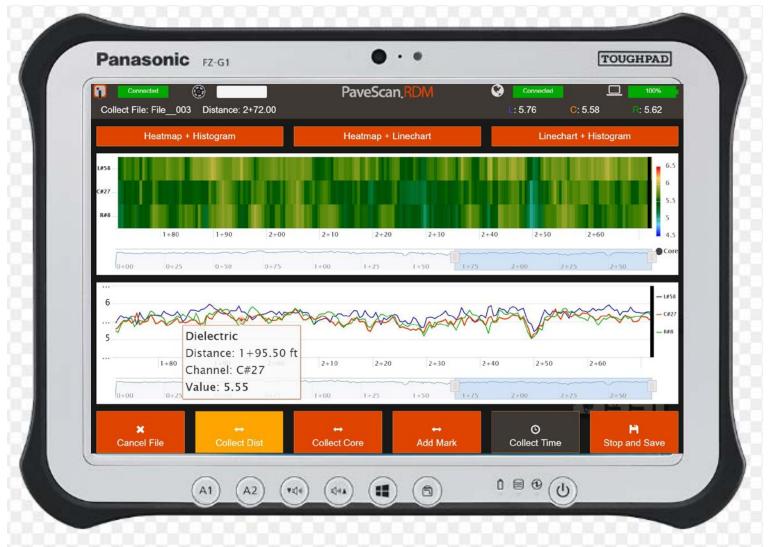
3-Channel Configuration

PaveScan RDM - Field Setup

- (1) Attach antennas and cabling
- (2) 10 Minute warm-up
- (3) System Calibration (3 minutes)
 - (a) Airwave
 - (b) Metal Plate

PaveScan RDM – Data Collection Strategies

Data is collected at walking speed (4-5 ft/second)


Single Pass – Wheel Paths and in between

Two Pass – Down and back

PaveScan RDM – Data Collection

PaveScan RDM – Data Collection Con't

PaveScan RDM – Playback

Panasonic FZ-G1	• • •	TOUGHPAD	
Playback File: GHHE-HMA-L1-SH-12R_047	PaveScan_RDM		
Heatmap + Histogram	Heatmap + Linechart	Linechart + Histogram	
C#60 Dielectric		6. 	
Distance: 851+16.50 ft R#63 Channel: L#60	•		Over 6000
	353+00 854+00 855+00 856+00 857-	+00 858+00 859+00 4	Measurer
Martin 100 851+00 852+00 8	153+00 855+00 Wh 856+00 857+	mon a marker in a month	Shown
utha	with the second second	— L#60	
4 850+00 851+00 852+00	ayar hayar da ay a can hayar ay an	- C#61 - R#63	
4 850+00 851+00 852+00 4	853+00 854+00 855+00 856+00 857-	- R#63	
4 850+00 851+00 852+00 851+00 852+00 852+00 852+00 852+00 851+00 852	353+00 854+00 855+00 856+00 857- 153+00 854+00 855+00 856+00 857- 153+00 854+00 855+00 857-0 ©	- R#63	
4 850+00 851+00 852+00 851+00 852	353+00 854+00 855+00 856+00 857- 11400	- R#63	

PaveScan RDM – Playback

PaveScan RDM – Playback Statistics

File Statistics					PaveScan.RDM				Statistics Loaded				
											S	earch:	
	Lateral Offset	Sensor Position	Serial #	Start Dist	End Dist 11	Total Dist 💵	Median 🗐	Average	Min 11	Max []	Standard Dev ⊥⊺	Histogram 5% ⊥†	
	7	Right	63	0+45.00	860+51.00	1106.1	5.27309	5.28818	4.75859	6.30392	0.169112	5.0428	
	9	Center	61	0+45.00	860+51.00	1106.1	5.16806	5.16869	4.58836	5.90648	0.119229	4.97978	
	11	Left	60	0+45.00	860+51.00	1106.1	5.22438	5.21 <mark>5</mark> 96	4.48204	6.19983	0.153228	4.9558	
Showing 1 to 3	of 3 entries												
								← Back to Fil	e				
									Pe	er-P	rofile	e Aver	age,
												ian, N	
												, Dev, a	-
												Stati	

PaveScan RDM – Playback

PaveScan RDM – Locate Cores

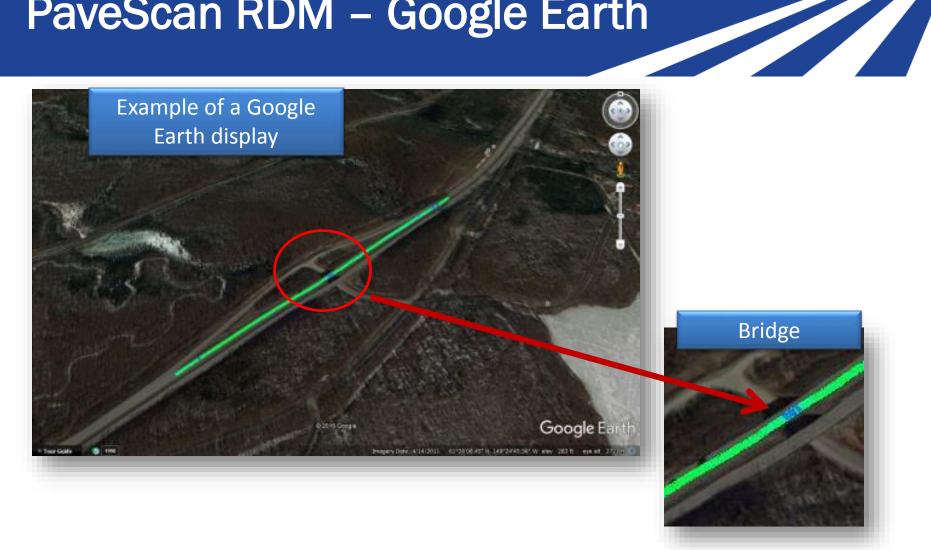
Core Locations		Pa	iveScan, <mark>R</mark> [DM	Core Locatio	ons Loaded	
						Search:	
Relative Dielectric	Lateral Offset	1 Sensor Position	👫 Serial #	11 Distance 11	Latitude 11	Longitude	Dielectric 11
High	7	Right	63	850+85.30	61.36875995	-149.53209829	5.71
High	7	Right	63	853+55.80	61.36946975	-149.53152801	5.58
High	11	Left	60	855+11.60	61.36988722	-149.53130113	5.57
Low	9	Center	61	859+43.70	61.37107205	-149.53082241	4.87
Low	9	Center	61	859+68.60	61.37114098	-149.53079571	4.87
Low	11	Left	60	858+34.40	61.37077333	-149.53094026	4.92
Mid	9	Center	61	857+16.80	61.37045089	-149.53104835	5.21
Mid	9	Center	61	854+82.50	61.36980884	-149.53133500	5.19
Mid	9	Center	61	856+48.10	61.37026351	-149.53111684	5.19
Showing 1 to 9 of 9 entries		# of	Cores 9				
Back to File	(A1) (A2) (4 4) (44)		a			

SHRP2 SOLUTIONS | 21

PaveScan RDM – Core Calibration

Core Dielectric and Void Values	Pave	Scan.RDM	Enter Core Information	
User-Entered	Core # II Retative Dielectric	If PercentVoids	User-Ent	ered
Core Dielectrics	1 5.51 2 5.65 3 5.9	5.0 4.8 4.1	Core % V	
	4 5.11 5 5.04	6.0		
	6 4.8 7 4.75 8 4.4	7.5 8.2 9.0	Equati %Void	on: s = Ae ^{Bd}
	9 4.25 10 Entervalue	9.6 Enter Value		d = diel
Showing 1 to 10 of 10 entries	Recall Last	III Calc. A & B	AF65 Back	51

PaveScan RDM – Percent Compaction



PaveScan RDM – Export

<u></u>		
Select Playback File	PaveScan_RDM	File Lists Loaded
	Project Group None	
	Project Name ghhe	
	File Name GHHE-HMA-L1-SH-12R_0	47. ~
	≡ ▶	
	File Properties Playback File	
	Project Info	
	Flujeut milo Export Flujeut	
	★ Ξ	
	Main Menu Range Options	
	.CSV files	s, import to 3 rd party softv
	Statistics	
		for Google Earth

PaveScan RDM – Google Earth

Data provided by Rich Giessel, Alaska DOT

PaveScan RDM – AND!!!

- No more certifications!!!
- No more security regulations!!!
- No more nuclear technology!!!

PaveScan RDM – Summary

PaveScan RDM is a complete GPR system providing:

- **Real-time** dielectric values of compacted asphalt
- Full Coverage (lane width and length)
- Automatically located core locations
- Compaction information on-site (after core calibration)
- Export to CSV and Google Earth KML files

And

• No certifications, security issues, factory calibrations

Nondestructive Evaluation of Bituminous Compaction Uniformity Using Rolling Density Meter

Summary of SHRP2 R06C Implementation Project

Lev Khazanovich, Ph.D. University of Pittsburgh

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

SHRP2 R06C Implementation

- Objectives:
 - Evaluate RDM equipment
 - Provide support to states in implementing RDM
- Partnership
 - FHWA, AASHTO, CH2M Hill, and ARA
 - University of Minnesota
 - MnDOT, Maine DOT, and Nebraska DOT
- Field Trails
 - Maine
 - Nebraska
 - Minnesota

Field Testing

- Objectives
 - DOT personnel training
 - RDM technology evaluation/refinement
 - Test protocols and specifications development
- Projects
 - US-52 near Zumbrota, Minnesota
 - HWY 2 in Lincoln, Nebraska
 - US-1 near Cherryfield, Maine
 - State Rte 9 near Clifton, Maine
 - I-95 near Pittsfield, Maine
 - US-14 near Eyota, Minnesota

Field Testing – Lessons Learned

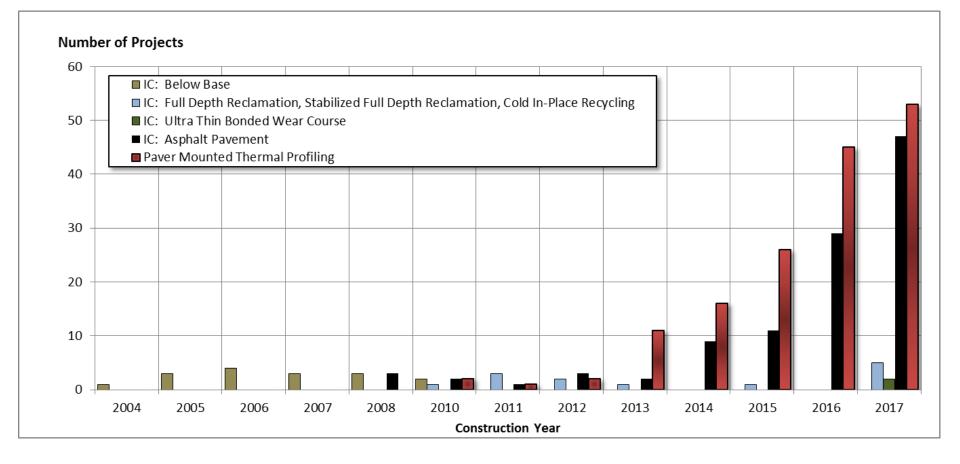
- RDM is an implementation-ready device
 - Easy to operate
 - Provides reparative measurements
 - Can operate continuously for 6-8 hours
- Day and night testing was conducted without interfering paving or delaying moving closure
- RDM is capable of providing real time assessment of inplace compaction uniformity
- Good dielectric air void correlations were obtained for the majority of the projects
- Good core data collection protocol is a key

Minnesota DOT Vision

Curt Turgeon, P.E.

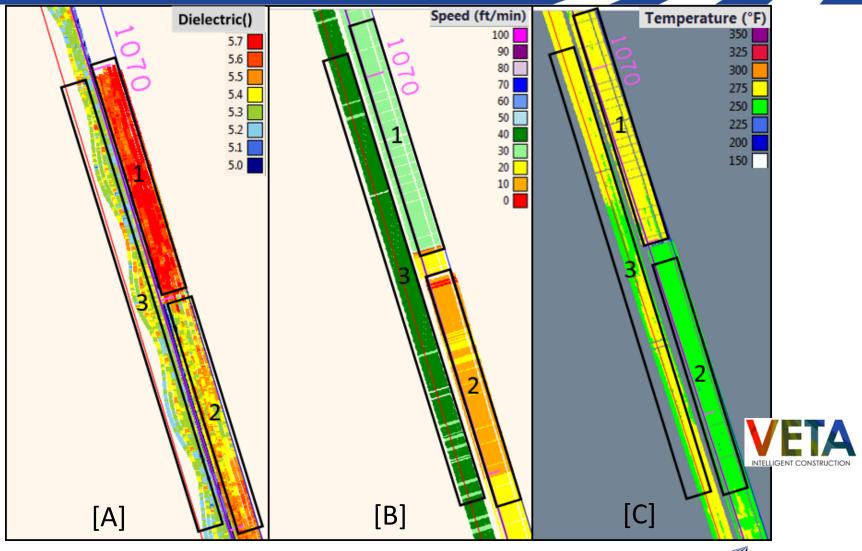
U.S. Department of Transportation Federal Highway Administration

Elephant = 6 tons

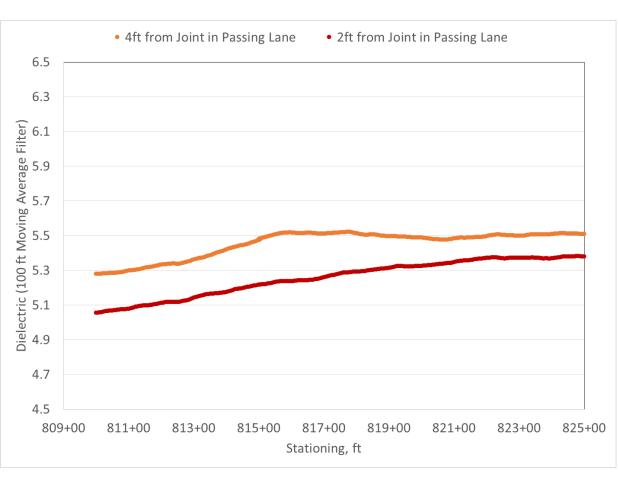

Hedgehog < 1 pound

For every 100 elephants of mix, we sample and test two hedgehogs (cores)

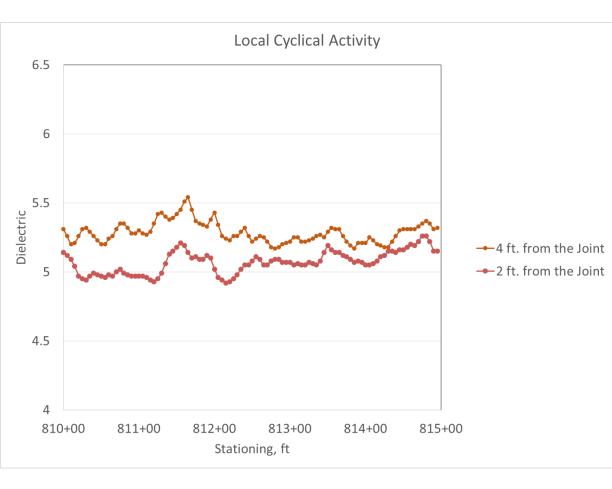
THAT'S IT?



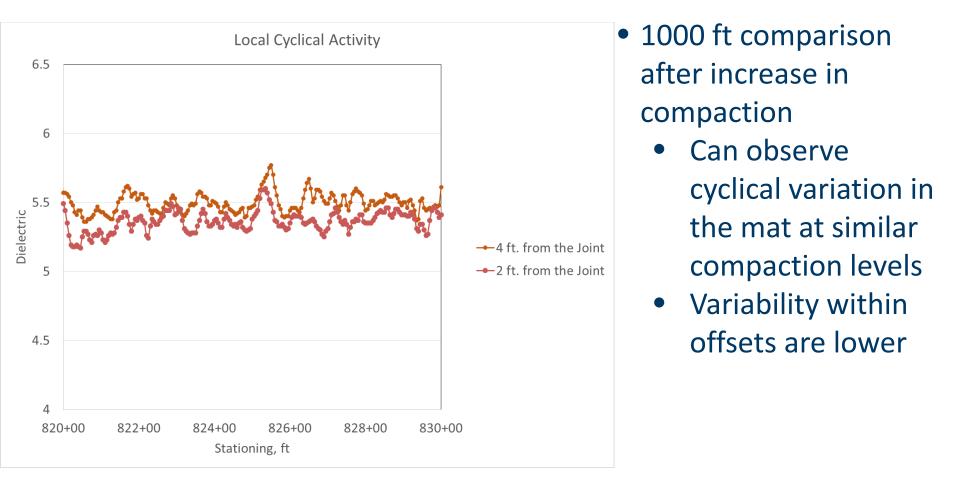
MN Intelligent Compaction and Thermal Profiling History



TH 52: Comparison with Other Factors


Interstate 35 – Passing Lane Offset Comparison

- First ½ mile stretch
 - Most of the increase occurs in the first 500 ft when 4 ft. away from the joint
 - Gradual increase over 2500 ft occurs at 2 ft. from the joint


Interstate 35 – Local Variation Offset Comparison

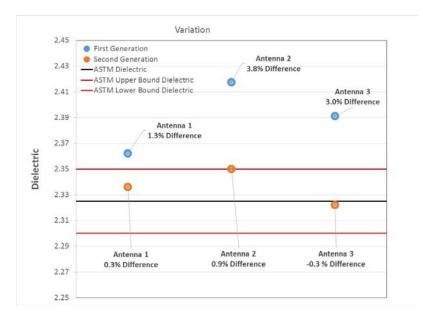
- First 500 ft local comparison
 - Can observe cyclical variation in the mat at different compaction levels
 - Both offsets show similar variations in compaction

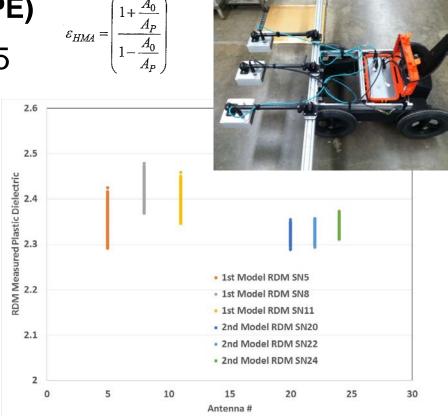
Interstate 35 – Passing Lane Offset Comparison

Minnesota DOT – RDM Experience

- Dr. Kyle Hoegh, MnDOT
- Dr. Shongtao Dai, MnDOT
- Dr. Lev Khazanovich, U. of Pittsburgh

FHWA/AASHTO for providing RDM MnDOT district materials and constructions UMN students


Equipment Calibration


Obtained RDM in 2015

Measurement difference among the antenna

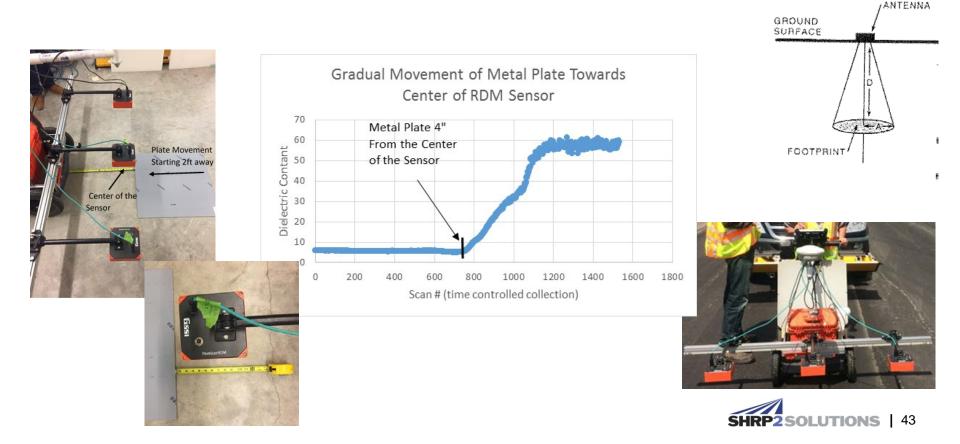
High Density Polyethylene (HDPE)

Reported dielectric: 2.3-2.35



>Underlying layer effect on surface measurement?

How thick does the HMA layer need to be so that the underlying layer (agg. base) has no effects?



Footprint area of an antenna (Fresnel Zone)?

 $Fr \sim 0.5 v (tr/fc)^{1/2}$

D=12", Fr (Radius) ~ 3.6" (for 2.7Ghz-RDM)

SHRP2 SOLUTIONS | 44

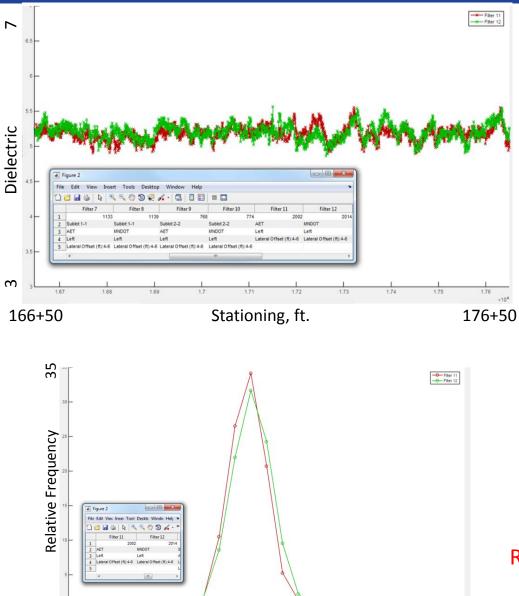
MnDOT's Plan

>2016 Field Testing:

TH52 and TH14: Surveyed about 18miles.

2017 Field Testing

- I35; Th52; Th22; Th60; CR86; Th110; CSAH13 and MnROAD
- Hired American Engineering Testing (AET) to collect data
 - Educating consultant and contractors on this new technology
 - Testing application feasibility of vehicle mounted RDM system on construction projects.


> 2018 Plan

- "Ghost" specification for contractor to use.
- Further improve the system based on feedback.

Field Equipment Validation

Dielectric

6.5

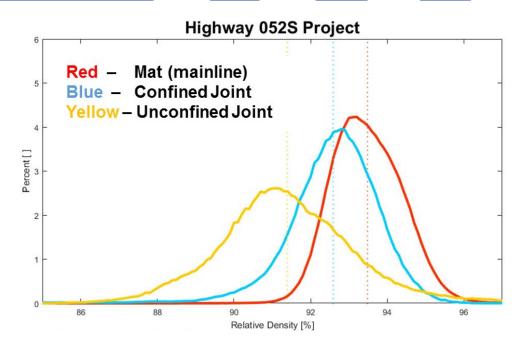
0

4.0

Green-MnDOT with Vehicle Mounted RDM

Red – Consultant with Walking Cart RDM

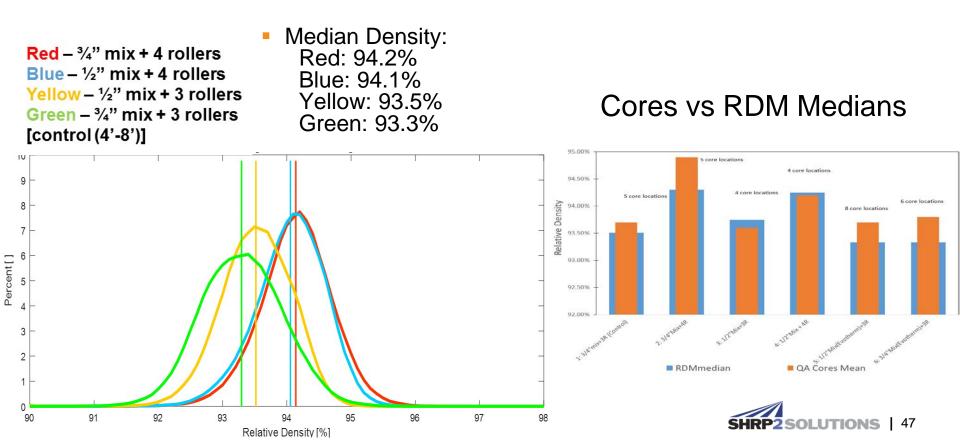
GPR Asphalt Compaction Evaluation: 2016 TH 52 Field Testing

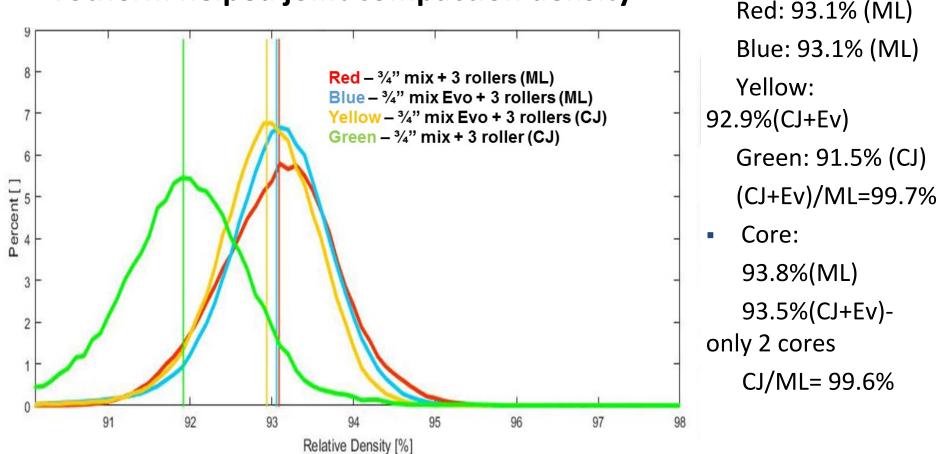

- Top lift Mainline vs Confined and Unconfined Joints Summary:
 - 93.5% (ML), 92.6%(CJ) and 91.4%(UCJ)
 - SD: 0.94(ML); 1.22(CJ);
 1.8(UCJ)
 - Density:

 \succ

- > UCJ/ML=97.7%; CJ/ML=99%
- Core data: UCJ/ML=95.1%

CJ/ML = 99.1%


- > 97.5% locations:
- > > 91.6%(ML),
- > 90.2% (CJ)
- > > 87.8% (UCJ)


GPR Asphalt Compaction Evaluation: 2016 TH 14 Field Testing

- Comparison of Test Sections
 - Mix B (3/4-) to A(1/2-): not much difference on compaction.
 - Adding a roller: density slightly increased on this project.

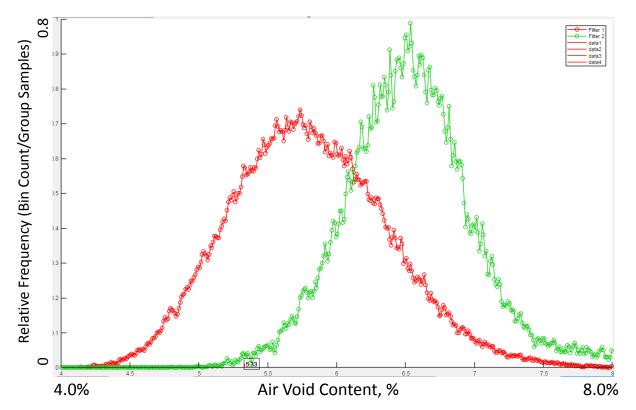
GPR Asphalt Compaction Evaluation: 2016 TH 14 Field Testing

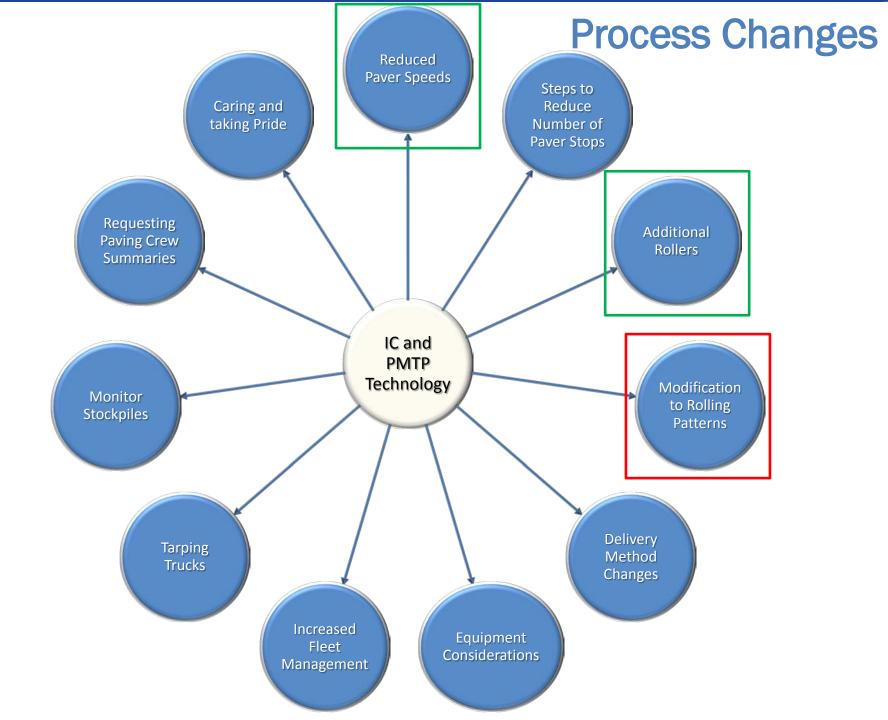
Evotherm helped joint compaction density



Median Density:

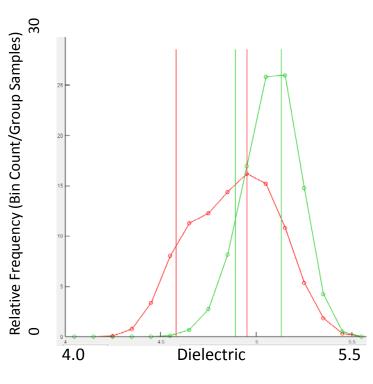
2017 TH52 N Standard Paving


Group Name	Stationing range, ft.	Offset range, ft.	Color	Samples	10 th Percentile Air Void Content
Driving Mat	223+50 to	2 to 10	Blue	257,817	7.5%
Driving Joint	1012+13	0.3 to 0.7	Brown	95,706	11.8%


SHRP2SOLUTIONS | 49

2017 I-35 Echelon Paving

7 I-35 Echelon Paving						
Group Name	Stationing range, ft.	Offset range, ft.	Color	Samples	10 th Percentile Air Void Content	
Passing Mat	507+24 to	-10 to -2	Red	137,309	6.5%	
Passing Joint	1012+13	-0.7 to -0.3	Green	37,864	7.4%	



GPR Asphalt Compaction: Roller Technique Evaluation

Group Name	Stationing range, ft.	Offset range, ft.	Color	Samples	Core Taken at 10 th %, Air Void Content
Roller Technique #1	920+00 to 925+00	Centered on Joint	Red	1000	9.6%
Roller Technique #2	935+00 to 940+00	Centered on Joint	Green	1000	7.7%

- Example 500 ft section where 2 different echelon breakdown roller techniques were used on the joint:
 - On-site RDM dielectric indicated greater compaction using technique 2
 - Core taken at 10th percentile indicated greater compaction in technique 2
- On-site dielectric can be used to give feedback as to what techniques are more effective for compaction

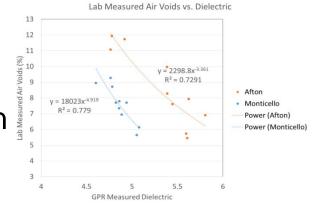
Future Improvements for Implementation

Sensitivity Study

How does each component in a mixture affect dielectric constant, such as aggregate type, gradation, binder type and content?

Develop a guideline on when contractor should notify agency if there is mixture

change during construction.


Establish Calibration Curve in Lab

- Potentially no field core needed
- Currently use field cores for calibration

Location accuracy ?

Calibration Procedure

- Current: High-density polyethylene (HDPE) and Garolite
- Swerving on field: max difference of 0.08 ?

Texas Experience with the RDM

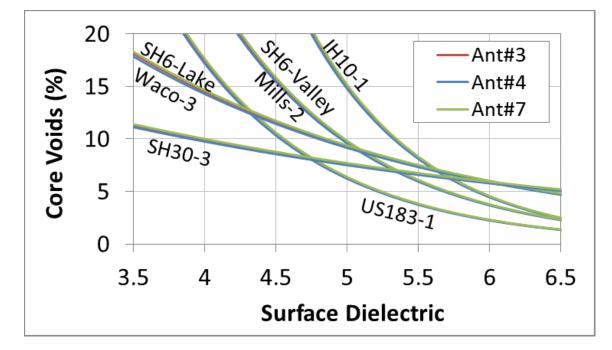
Stephen Sebesta, TTI Bryan Wilson, PE, TTI March 8, 2018

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

How to Improve Acceptance Testing

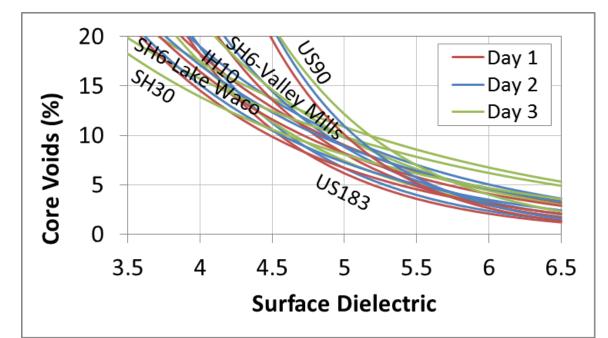
Bigger

Smarter

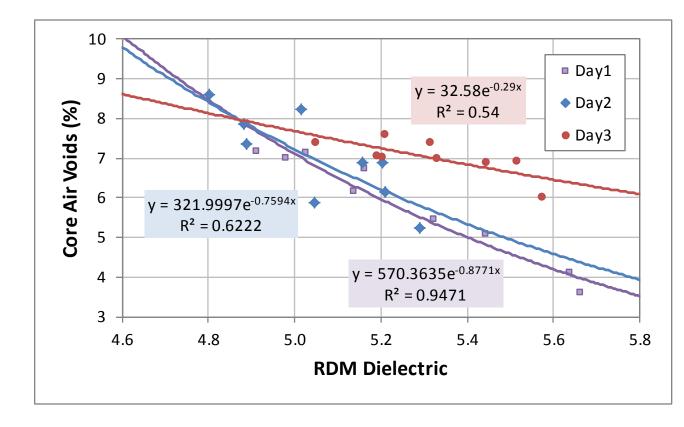


Deployment of RDM on Projects

	& 2	Project	Mix Type	NMAS (in.)	Binder Type	Optimum AC (%)	Aggregate Type	Theo. Max SG	Thickness (in.)
	Ţ	FM 1887	TOM-C	3/8	70-22	6.7	Limestone	2.474	1.0
	Gen	RM 12	TOM-F	1/4	76-22	7.3	Sandstone	2.348	0.5
	G	Riverside	DG Ty-C	1/2	76-22	4.8	Limestone	2.447	2.0
		US 183	TOM-F	1/4	76-22	7.2	Sandstone	2.376	0.75
	se l	US 90	SP Ty-D	3/8	70-22	5.2	Quartzite Limestone	2.443	1.5
	Phase	IH 10	SP Ty-C	1/2	64-22	5.1	Sandstone Limestone	2.462	2.0
n 3		FM 31	DG Ty-D	3/8	64-22	5.4		2.481	2.0
Gen		SH 6-VM	DG Ty-D	3/8	64-22	5.2	Dolomite Gravel	2.447	2.0
	Phase	SH 6- Waco	TOM-C	3/8	76-22	6.6	Sandstone Dolomite	2.434	1.25
		SH 30	SMA-C	1/2	76-22	6.0	Sandstone Dolomite	2.405	2.0

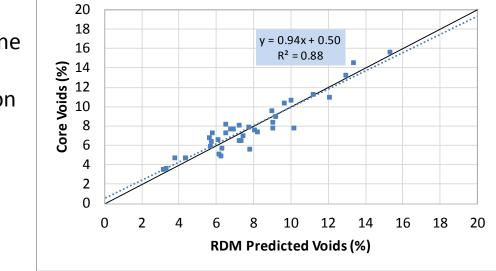

Antenna impact on Calibration

Predictor Variable	Model p-value	Model R ²	Variable p-value	Significant
Dielectric			<0.0001	Yes
Antenna	<0.0001	0.895	0.3111	No
Project_Day			< 0.0001	Yes
Project_Day*Dielectric			<0.0001	Yes


Production Day impact on Calibration

Predictor Variable	Model p-value	Model R ²	Variable p-value	Significant
Dielectric			<0.0001	Yes
Project			<0.0001	Yes
Day	<0.0001	0.845	0.0696	No
Project*Dielectric			< 0.0001	Yes
Day*Dielectric			0.0145	Yes

Example influence of Paving Day



No clear explanation for this shift. Records show no major change in mix design or construction processes.

Accuracy and Bias

Example iteration of one possible air void prediction scenario

Overall Accuracy and Bias Results (TxDOT Phase I Projects)

Dradiction	Bias		Error Standard	Accuracy 95%	
Prediction Method	Avg. Error (% voids)	p-value	Deviation (% voids)	Confidence Interval (% voids)	
GPR Dielectric (empirical)	0.02	0.463	0.99	0.02 ± 1.94	

Potential applications for Acceptance

Currently projects w/ \sim 20% not in target compaction region often receive bonus. As an industry, are we ok with this?

- TxDOT considering implementation effort using empirical calibration approach
- Deployment of RDM for information on projects in 2018 paving season
 - Test on sublot level
 - Void distributions
 - Hypothetical composite pay factor
 - Random placement sampling and testing still applicable
- Continued work on calibration approaches

Compaction Acceptance of Asphalt Paving using PaveScan RDM Continuous Full Coverage Data

SHRP2 R06C GPR RDM Implementation

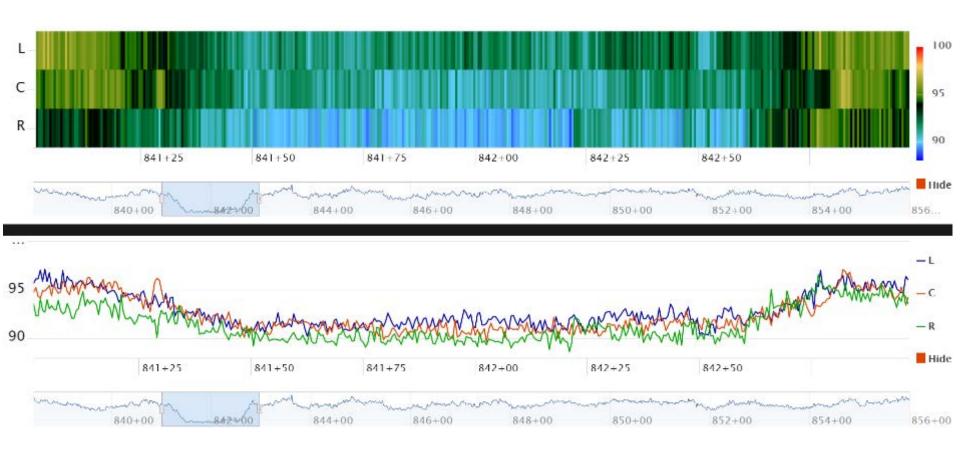
Rich Giessel, P.E., State QA Engineer, Alaska DOT&PF

richard.giessel@alaska.gov

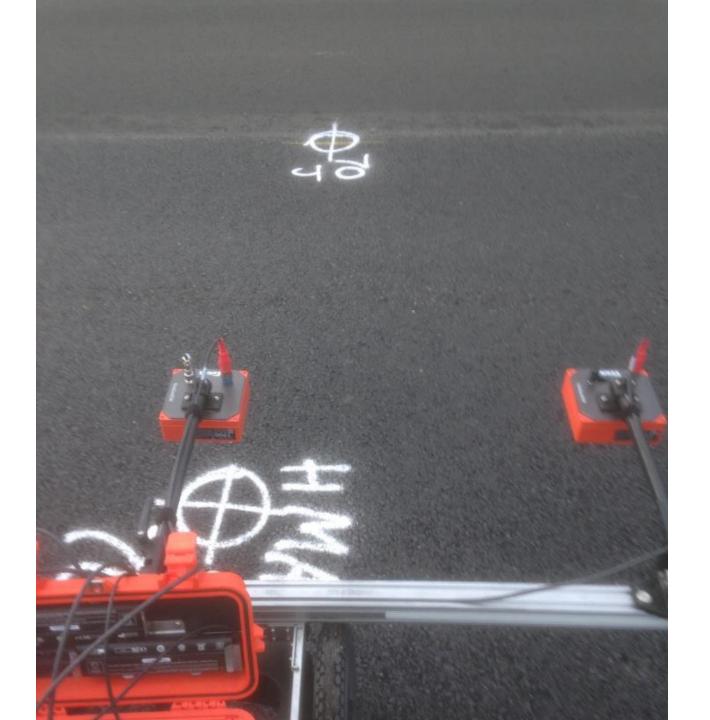
(907) 269-6244

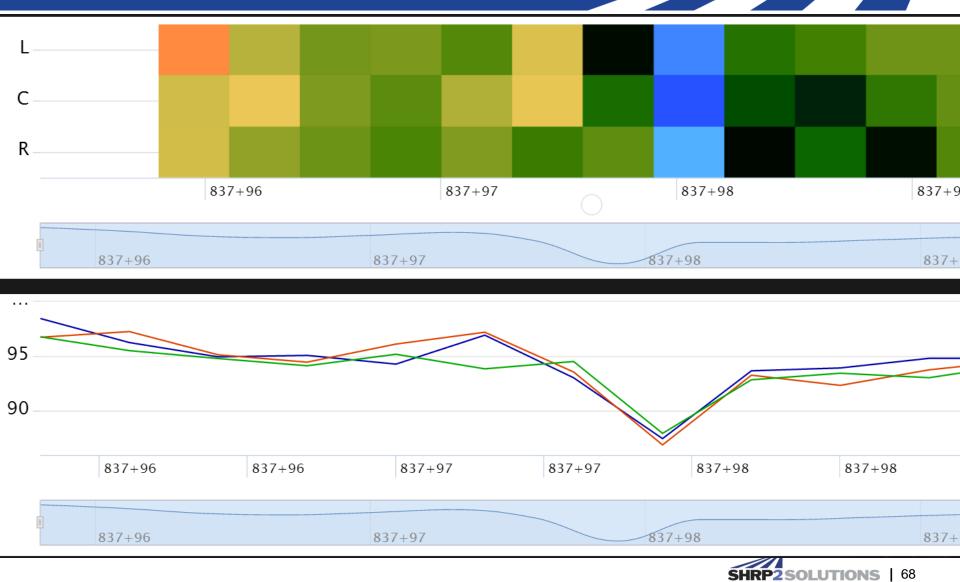
March 8, 2018

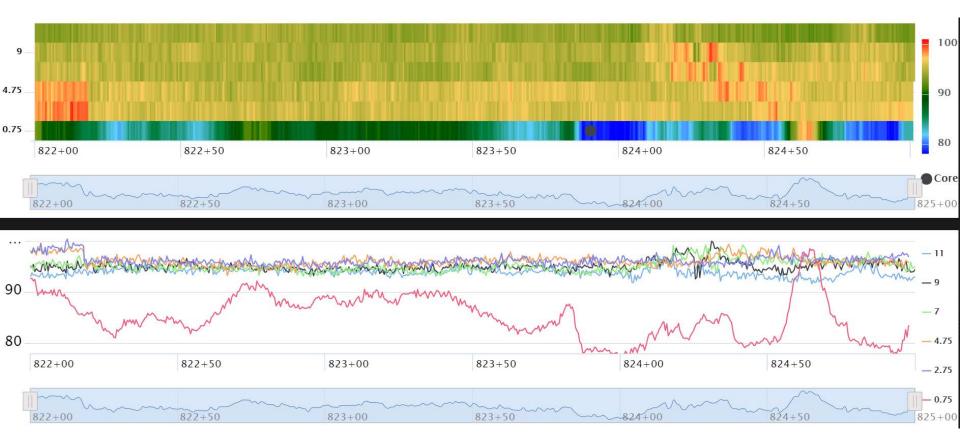
AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS


2.5 Million Compaction Tests in 22 Nights

- 50,000 Tons of Alaska Type VH Asphalt Paving (Superpave mix with Hard aggregate and Modified Oil)
- 15.2 Miles of 4 lane divided highway
- 2" Mill and fill to repair studded tire damage
- 65,000 ADT
- Alaska's Glenn Highway-Hiland Rd to Eklutna
- May 22 to June 21, 2017




Low Density was Typical at Bridges S. Birchwood Bridge,



Low Density (87%) at Longitudinal joint @ RDM Resolution of 3 inch, but Core = 92.9%

Low Density Adjacent Rumble Strip

You get what you pay for!

On this project we offered a stepped bonus of up to \$1.50/ft if average longitudinal joint compaction for the project achieved 94% of MSG

- >92.0% = \$0.50 per lineal foot is added
- >93.0% = \$1.00 per lineal foot is added
- >94.0% = \$1.50 per lineal foot is added

Alaska's goal is to compact asphalt pavements to our mix design value which is 96% for a mix designed with 4% Air Voids.

- Use the raw lot data to calculate % Conforming (PC) directly
- 5000 Ton lot with 2" lift thickness and 150 pcf density = 400,000 sf
- With PaveScan RDM readings every square foot, raw lot data will have 400,000 compaction values on about 6.3 lane miles

New Specification for Mat Compaction

Mat Compaction Bonus:

- Set Lower Specification Limit for mat bulk density at 93.0% of Maximum Specific Gravity
- 2. For asphalt mat density pay factor calculate the Percentage of Conforming (PC) compaction values from the raw PaveScan RDM data for each lot.
- 3. Mat Density Pay Factor = 0.55 + PC/200

New Specification for Joint Compaction

- Increase the longitudinal joint bonus linearly from the minimum value of 92.0% to 96.0% in 0.1% increments
- Alaska may offer a joint compaction bonus of \$2.00/lineal foot when mix design compaction value is achieved.
- Joint compaction bonus may be based on average compaction and number of lineal feet of joint per lot or for the entire project.

Q: What happens when you don't get what you paid for?

A: Require Repairs Goal is "No Potholes Left Behind"

REPAIRING DEFECTIVE MAT AREAS

 Apply Sand Seal to the mat of an entire lane station that contains low (<92%) density areas that are small (less than 8 ft²), discontinuous, and total more than 2% of a lane station area [(2%)(12'x100') = 24 ft²]

REPAIRING DEFECTIVE MAT AREAS

 Apply Sand Seal to the mat of an entire lane station that contains a large (equal to or greater than 8 ft²) contiguous low density area. If a large, low-density area straddles a station line, is less than 50' in length, and if it is the only low density area in both stations, then the 100' lane length of sand seal shall be centered on the defect.

REPAIRING DEFECTIVE JOINTS

- Apply Joint Sealant to each station where the longitudinal joint within that station contains ≥5% joint density readings below 92.0%
- Receiving full joint bonus will not relieve Contractor from requirement to seal all defective segments of longitudinal joint
- Joint bonus is not paid until sealant has been successfully applied to all defective segments of the lot or project

Questions?

Contacts:

- Steve Cooper, FHWA, Stephen.J.Cooper@dot.gov
- Pam Hutton, AASHTO, phutton@aashto.org
- Kate Kurgan, AASHTO, kkurgan@aashto.org

Resources:

- AASHTO SHRP2 R06C Webpages:
 - <u>http://shrp2.transportation.org/Pages/R06C_Rap</u> <u>idTechnologiestoEnhanceQualityControl.aspx</u>
- FHWA GoSHRP2 R06C Webpage:
 - <u>https://www.fhwa.dot.gov/goshrp2/</u>

Thank you!

