

### COLORADO

Department of Transportation







# Innovative Bridge Designs in Colorado

by Pete Chomsrimake, P.E. ABC Project SME, CDOT Staff Bridge

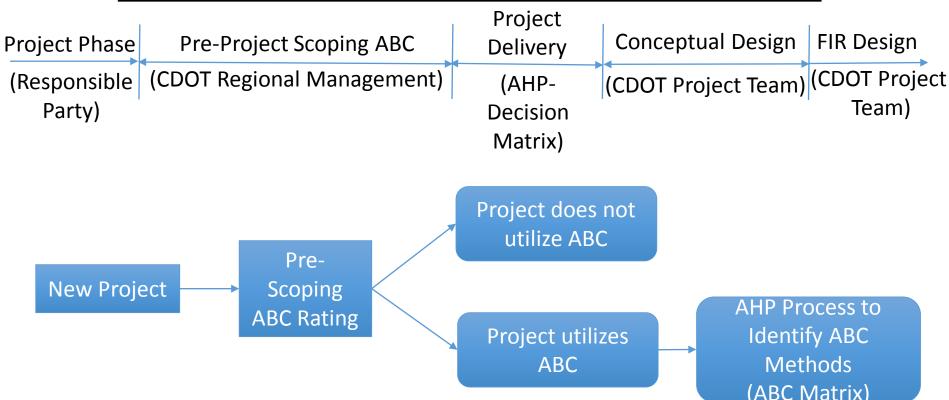


# **ABC History in Colorado**

# 1. Promote Using Prefabricated Bridge & CBC Members since Early 1990 (Partnership with Local Fabricators)

- Design Policy: To Allow Deck Replacement
- Standard Sections: Precast Box, BT & Spliced Curved Tub
- Non-standard Sections: Precast Super. & Substructure
- Precast Deck: Deck Form & Full-Depth Deck Panel

### 2. ABC Projects & Seminars completed Up-to-Date


- 73 Bridges & CBCs: Lifting-on, Sliding-in and Moving-in
- Webminar, "Sliding-In Bridge Construction" (w/ FHWA)
- Seminar, "ABC Evaluation & Decision" & More to Come
- Workshop, "Pecos & I-70 Bridge Move Workshop"



### **Activity 1 Develop & Implement ABC Evaluation Procedures**

>> Completed 02/1/2013

### **ABC Evaluation and Decision Matrix Workflow**



(AHP = Analytic Hierarchy Process)



### **ABC Pre-Scoping Evaluation Factors Needed**

- 1. Average Daily Traffic
- 2. Delay/Detour Time
- 3. Bridge Classification (Normal, Essential & Critical Bridges)
- 4. User Costs (Finance Impact of a Project on Travelling Public)
- 5. Economy of Scale (Repetition of Elements: 1, 2, or more spans)
- 6. Safety (To Travelling Public and Work Force)
- 7. Railroad Impacts
- 8. Site Conditions (Physical Constraints: Alignment Shifts & Envir.)



# **ABC Pre-Scoping Evaluation - Rating**

|                              |                      | _      |                 |                      |                 |                  |          |
|------------------------------|----------------------|--------|-----------------|----------------------|-----------------|------------------|----------|
| Dog.                         |                      |        |                 | Project:             | Number          |                  |          |
| DOT                          |                      |        |                 | By:                  | Initials        | Checked:         | Initials |
|                              |                      |        |                 | Date:                | 0/0/00          |                  | 0/0/00   |
| DEPARTMENT OF TRANSPORTATION |                      |        |                 | Sheet No.            | 1               | of               | 3        |
| Pre-Scoping ABC Ratir        | na                   |        |                 |                      |                 | -                | May 2012 |
| The ecoping ABO Ruth         | 19                   |        |                 |                      |                 |                  | may 2012 |
|                              |                      |        |                 |                      |                 |                  |          |
| Enter values for each asp    | pact of the project  | Attach | applicable su   | innorting data       |                 |                  |          |
| Liner values for each asp    | bect of the project. | Allaci | applicable st   | apporting date       | a.              |                  |          |
|                              |                      |        |                 |                      |                 |                  |          |
|                              | ٥                    | •      | N               |                      |                 |                  |          |
| Average Daily Traffic        | 0                    | 0      | No traffic im   | •                    |                 |                  |          |
| Combined on and under        |                      | 1      | Less than 5     |                      |                 |                  |          |
| Enter 5 for Interstate High  | nways                | 2      | 5000 to 100     |                      |                 |                  |          |
|                              |                      | 3      | 10000 to 15     |                      |                 |                  |          |
|                              |                      | 4      | 15000 to 20     | 000                  |                 |                  |          |
|                              |                      | 5      | More than 2     | 0000                 |                 |                  |          |
|                              |                      |        |                 |                      |                 |                  |          |
| Delay/Detour Time            | 0                    | 0      | No delays       |                      |                 |                  |          |
|                              |                      | 1      | Less than 5     | minutes              |                 |                  |          |
|                              |                      | 2      | 5-10 minute:    | S                    |                 |                  |          |
|                              |                      | 3      | 10-15 minute    | es                   |                 |                  |          |
|                              |                      | 4      | 15-20 minute    | es                   |                 |                  |          |
|                              |                      | 5      | More than 2     | 0 minutes            |                 |                  |          |
|                              |                      |        |                 |                      |                 |                  |          |
| Bridge Importance            | 0                    | 1      | Normal Brid     | ge - minimal         | access impa     | cts              |          |
|                              | -                    | 3      | Essential Br    | ridge - impact       | ts to locals a  | nd business      |          |
|                              |                      | 5      | Critical Bridg  | ge - only acc        | ess to comm     | unity or busir   | ness     |
|                              |                      |        |                 |                      |                 | •                |          |
| User Costs                   | 0                    | 0      | No user cos     | ts                   |                 |                  |          |
|                              |                      | 1      | Less than \$    | 10,000               |                 |                  |          |
|                              |                      | 2      | \$10,000 to \$  | 50,000               |                 |                  |          |
|                              |                      | 3      | \$50,000 to \$  | 375,000              |                 |                  |          |
|                              |                      | 4      | \$75,000 to \$  | 100 000              |                 |                  |          |
|                              |                      | 5      | More than \$    |                      |                 |                  |          |
|                              |                      | Ü      | Word than \$    | 100,000              |                 |                  |          |
| Economy of Scale             | 0                    | 0      | 1 span          |                      |                 |                  |          |
| (repetitive work or          |                      | 1      | 2 to 3 spans    |                      |                 |                  |          |
| standard details)            |                      | 2      | 4 to 5 spans    |                      |                 |                  |          |
| Stariuaiu uetaiis)           |                      | 3      |                 | ,<br>r multiple stru | ictures         |                  |          |
|                              |                      | 3      | > 5 spails 0    | i multiple stit      | actures         |                  |          |
| Safety                       | 0                    | 1      | Short duration  | n impact wit         | h simple MO     | Techama          | l        |
| Jaioty                       | U                    | 2      |                 |                      | h multiple tra  |                  |          |
|                              |                      | 3      |                 |                      |                 |                  |          |
|                              |                      |        |                 |                      | ith multiple t  |                  |          |
|                              |                      | 4      |                 |                      |                 | e traffic shifts |          |
|                              |                      | 5      | Extended at     | iration impac        | t with comple   | x MOT sche       | ne       |
| Dailyand Immants             |                      | 0      | No rollros -1 - |                      |                 |                  | l        |
| Railroad Impacts             | 0                    | 0      |                 | or minor railro      | •               |                  |          |
|                              |                      | 3      |                 | e railroad trad      |                 |                  |          |
| I                            |                      | 5      | iviuitipie mai  | nline railroad       | uacks           |                  |          |
| Cita Canditi                 | 0                    | 0      | Imbibition - 1  |                      |                 | ofile ol-:ft\    |          |
| Site Conditions              | 0                    | 0      | -               |                      | e.g. > 1 ft. pi | ,                |          |
| 1                            |                      | 3      |                 |                      | (e.g. utility s | neaules)         |          |
| 1                            |                      | 5      | ravorable si    | te conditions        |                 |                  | I        |
|                              |                      |        |                 |                      |                 |                  |          |



### **ABC Pre-Scoping Evaluation - Rating**

| Ŷ | DOT |
|---|-----|
|   |     |
|   |     |
|   | _   |

 Project:
 Number

 By:
 Initials
 Checked:
 Initials

 Date:
 0/0/00
 0/0/00

 Sheet No.
 2
 of
 3

Pre-Scoping ABC Rating

May 2012

Note: Do not adjust weight factors without prior consultation with CDOT Project Development Manager

| ABC RATING SCORE FACTORS AND WEIGHTS |                                 |             |       |            |       |  |  |  |  |
|--------------------------------------|---------------------------------|-------------|-------|------------|-------|--|--|--|--|
|                                      | Weight Adjusted Maximum Adjuste |             |       |            |       |  |  |  |  |
|                                      | Score                           | Factor      | Score | Score      | Score |  |  |  |  |
| Average Daily Traffic                | 0                               | 10          | 0     | 5          | 50    |  |  |  |  |
| Delay/Detour Time                    | 0                               | 10          | 0     | 5          | 50    |  |  |  |  |
| Bridge Importance                    | 0                               | 5           | 0     | 5          | 25    |  |  |  |  |
| User Costs                           | 0                               | 10          | 0     | 5          | 50    |  |  |  |  |
| Economy of Scale                     | 0                               | 3           | 0     | 3          | 9     |  |  |  |  |
| Safety                               | 0                               | 10          | 0     | 5          | 50    |  |  |  |  |
| Railroad Impacts                     | 0                               | 5           | 0     | 5          | 25    |  |  |  |  |
| Site Conditions                      | 0                               | 5           | 0     | 5          | 25    |  |  |  |  |
|                                      |                                 | Total Score | 0     | Max. Score | 284   |  |  |  |  |

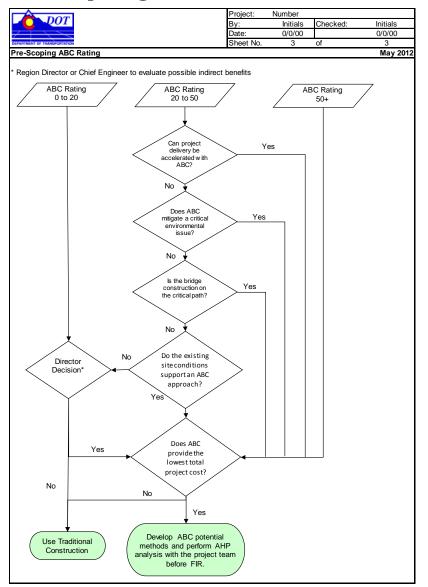
ABC Rating Score: 0 % of Maximum Score

The ABC Rating Score is driven by the four most heavily weighted factors: Average Daily Traffic, Delay/Detour Time, User Costs and Safety. For a detailed explanation, review the narrative on page 4 of the ABC Decision Making Process.

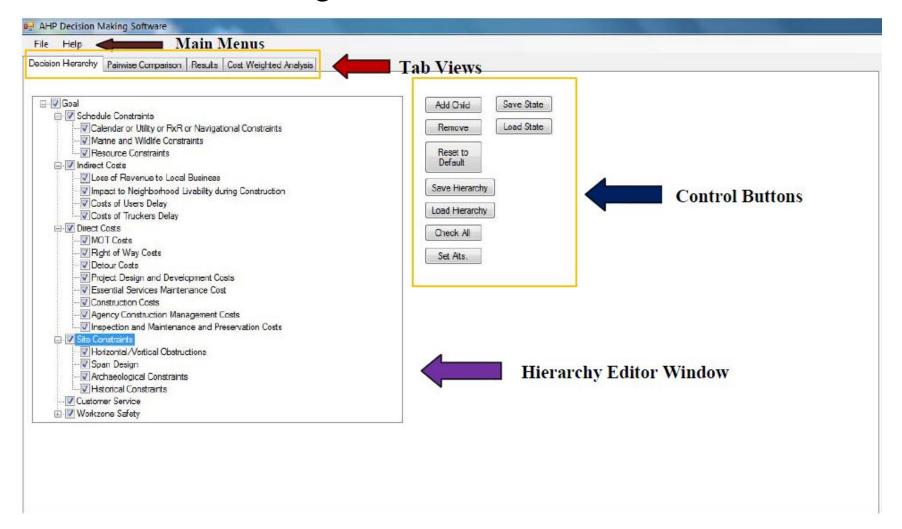
#### Cost Considerations:

Calculate the following costs for use in determining the lowest total project cost

| TOTAL PROJECT COST EVALUATION       |     |     |  |  |  |  |
|-------------------------------------|-----|-----|--|--|--|--|
| Traditional Const. ABC Construction |     |     |  |  |  |  |
| *Construction Costs                 | \$0 | \$0 |  |  |  |  |
| User Costs                          | \$0 | \$0 |  |  |  |  |
| Total Project Cost                  | \$0 | \$0 |  |  |  |  |


 Account for the following Construction Costs that can be dramatically reduced with ABC construction:

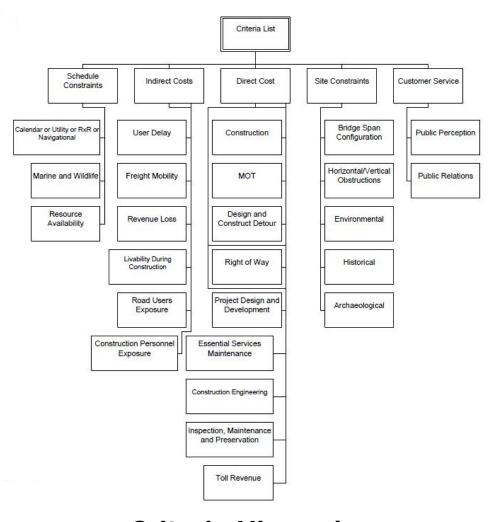
> Detour Traffic Control Railroad flagging Railroad shoefly


Increased Contractor and/or CDOT safety



### **ABC Pre-Scoping Evaluation – Flow Chart**








**ABC - APH Decision Making Software** 

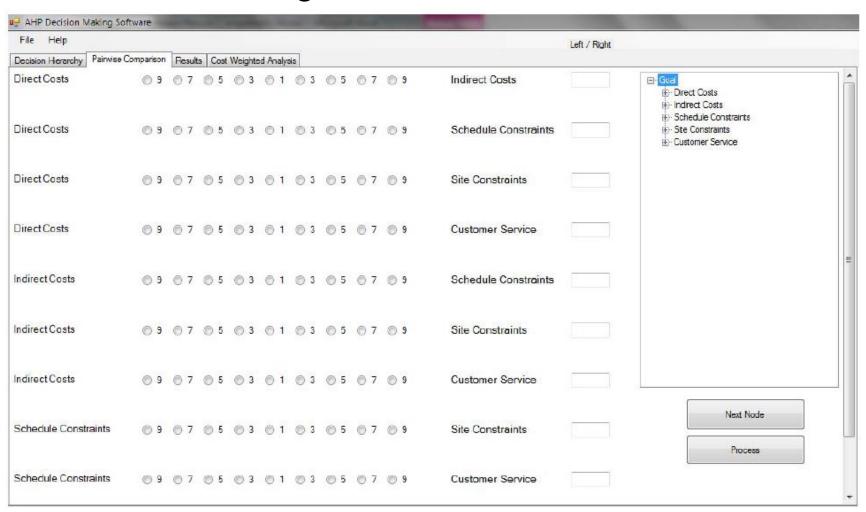


### **ABC Decision Making-AHP Software customized for CDOT**



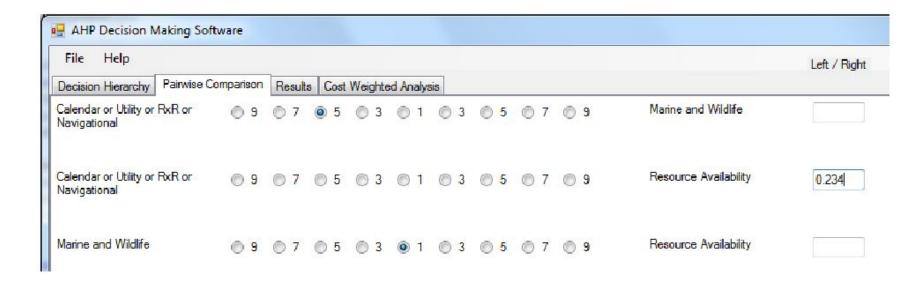
Criteria Hierarchy



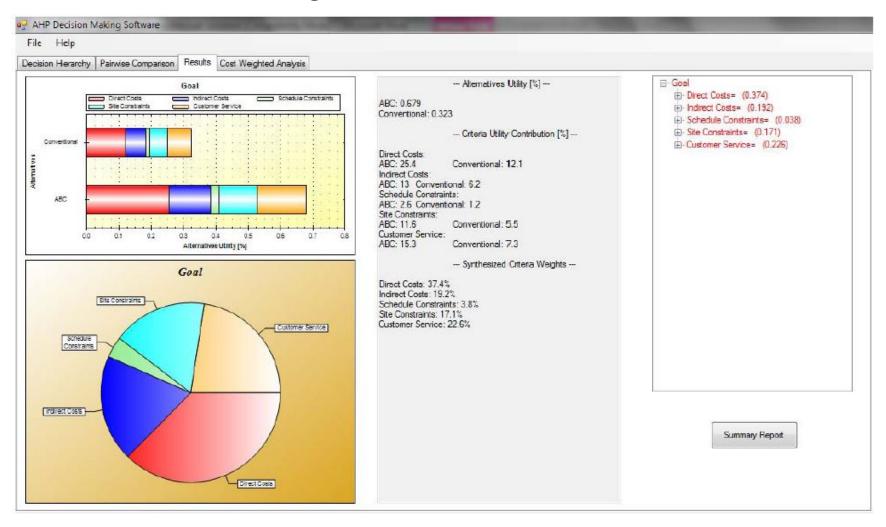

### **ABC Decision Making-AHP Software customized for CDOT**

| Intensity  | Definition                                             | Explanation                                                                                     |  |  |
|------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| 1          | Equal importance                                       | Two activities contribute equally to the objective                                              |  |  |
| 3          | Weak importance of one over another                    | Experience and judgment slightly favor one activity over another                                |  |  |
| 5          | Essential or strong importance                         | Experience and judgment<br>strongly favor one activity over<br>another                          |  |  |
| 7          | Demonstrated importance                                | An activity is strongly favored, and its dominance demonstrated in practice                     |  |  |
| 9          | Absolute importance                                    | The evidence favoring one activity over another is of the highest possible order of affirmation |  |  |
| 2, 4, 6, 8 | Intermediate values between the two adjacent judgments | When compromise is needed                                                                       |  |  |

#### **AHP Pairwise Comparison Scale**

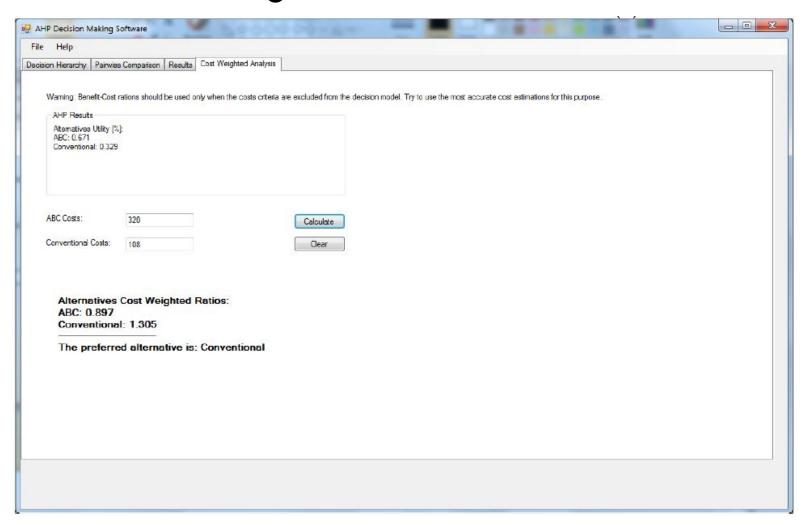



### **ABC Decision Making-AHP Software customized for CDOT**




**AHP Decision Making Software Pairwise Comparison Form** 

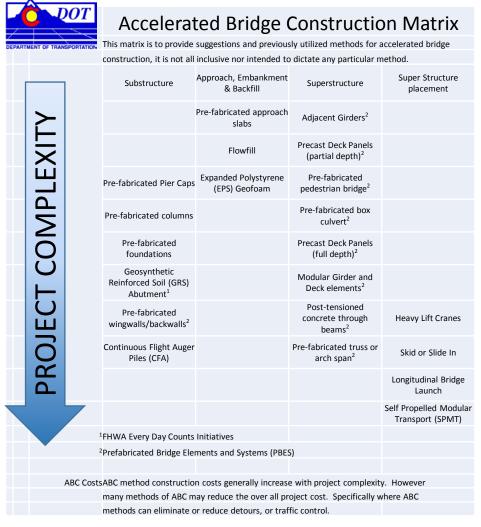









**AHP Analysis Result** 






**AHP Benefit-Cost Analysis** 



### **ABC Decision Making-AHP Software customized for CDOT**



**ABC Matrix - Suggested Construction Methods** 



### **ABC Decision Making-AHP Software customized for CDOT**

#### **Accelerated Bridge Construction Matrix**

This matrix is to provide suggestions and previously utilized methods for accelerated bridge construction, it is not all inclusive nor intended to dictate any particular method.

|                | Construction<br>Contracting                      | Substructure                                                | Approach, Embankment<br>& Backfill    | Superstructure                                        | Super Structure placement                  |
|----------------|--------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|--------------------------------------------|
|                | A+B Contract Provision                           | Pre-fabricated Pier Caps                                    | Pre-fabricated approach slabs         | Adjacent Girders <sup>3</sup>                         |                                            |
|                | Contract in Calendar Days                        | Pre-fabricated columns                                      | Expanded Polystyrene<br>(EPS) Geofoam | Precast Deck Panels<br>(partial depth) <sup>3</sup>   |                                            |
| Tier 1 Methods | Fixed Completion Date<br>Contract                | Pre-fabricated foundations                                  | Flowfill                              | Pre-fabricated pedestrian bridge <sup>3</sup>         |                                            |
| Tier 1 M       | Incentive-Disincentive<br>Provision              | Geosynthetic Reinforced<br>Soil (GRS) Abutment <sup>2</sup> |                                       | Pre-fabricated box culvert <sup>3</sup>               |                                            |
|                | Lane Rental Provision                            | Pre-fabricated wingwalls/backwalls                          |                                       |                                                       |                                            |
|                | Value Engineering<br>Specification               | Continuous Flight Auger<br>Piles (CFA)                      |                                       |                                                       |                                            |
|                | CM/GC Contract Delivery <sup>1,2</sup>           |                                                             |                                       | Precast Deck Panels<br>(full depth) <sup>3</sup>      | Longitudinal Bridge Launch                 |
|                | Design Build Contract<br>Delivery <sup>1,2</sup> |                                                             |                                       | Modular Girder and Deck<br>elements <sup>3</sup>      | Self Propelled Modular<br>Transport (SPMT) |
| ethods         |                                                  |                                                             |                                       | Orthotropic Deck <sup>3</sup>                         | Skid or Slide In                           |
| Tier 2 Methods |                                                  |                                                             |                                       | Steel grid deck<br>(open or filled) <sup>3</sup>      | Heavy Lift Cranes                          |
|                |                                                  |                                                             |                                       | Post-tensioned concrete<br>through beams <sup>3</sup> |                                            |
|                |                                                  |                                                             |                                       | Pre-fabricated truss or arch<br>span <sup>3</sup>     |                                            |

Utilize the Delivery Selection Matrix developed by ICAC to determine delivery method

**ABC Method Matrix - Suggestions of Contracting Methods** 

<sup>&</sup>lt;sup>2</sup> FHWA Every Day Counts Initiatives

<sup>&</sup>lt;sup>3</sup> Prefabricated Bridge Elements and Systems (PBES)



### **Activity 2 Communicate Goals and Documents to All**

>> Completed 03/6/2013

### 1. Develop ABC Design Bulletin to All:

- All bridges are ABC, unless proved to not be practical or economical by ABC - AHP Evaluation Software.

#### 2. Level of ABC:

Tier 1: Prefabricated Deck on Girders

Tier 2: Prefabricated Superstructure w/ Deck Composite Sections

Tier 3: Prefabricated Superstructure & Substructure Elements



#### **DESIGN BULLETIN**

Colorado Department of Transportation
Project Development Branch

Accelerated Bridge Construction (ABC) 2012 Number 3, Page 1 of 1 Date: December 13, 2012

#### Accelerated Bridge Construction (ABC)

In order to further strengthen CDOT's role as stewards of the taxpayers' dollars, and to minimize the impact to the traveling public, CDOT has developed a tool for evaluating accelerated bridge techniques, to determine whether or not they are appropriate for a given project.

This design bulletin provides general guidance as to the use of accelerated bridge construction techniques on a project that contains one or more bridges.

#### Applicable Materials:

All applicable materials for ABC evaluation can be downloaded at the internet link given below. The materials are compressed in a Zip file. Download the materials, unzip the files, and save the files to your local machine.

http://intranet/engineering/staff-bridge/accelerated-bridge-construction/view

#### Guidance:

The accelerated bridge construction methodology is to be evaluated for all projects that will contain one or more bridges and a justification letter written to the project file as to why or why not an ABC technique will be used on a project. The justification letter should include materials completed during the ABC evaluation. The design team may choose to work with the designated Staff Bridge Engineer for guidance and information regarding the use of the ABC materials.

The document "CDOT\_ABC\_Selection\_Overview" contains an overview of the ABC process. The process is a two-phase approach. One phase is a cursory evaluation as to whether or not ABC is appropriate for a given project. The second phase is an in-depth evaluation as to what type of ABC technique will be employed. This cursory evaluation is to be done during the scoping phase using the spreadsheet "CDOT\_Prescoping\_ABC\_Rating\_Attachment\_B". If the results of the cursory evaluation show that an ABC technique is appropriate for the project, the design team may move on to a more in-depth evaluation using the "ABC Decision Making Software" to determine which ABC method best meets the project's goals and constraints. If the in-depth evaluation is required, the design team shall schedule a meeting with all specialty groups including but not limited to: Staff Bridge, Utilities, Environmental, Traffic, Hydraulics, etc. to execute the ABC Decision Making Software. The results of the software are to become part of the project files.

The above information is represented graphically in the document titled, "ABC\_Workflow\_Attachment \_A"



# **Activity 3 Develop ABC Examples for CDOT & Consultants to Utilize**

>> Completed 08/31/2013

# Pecos Street over I-70 Bridge Replacement Project

Pre-Bridge Move Technical Workshop July 17, 2013











### **Activity 4 Report and Track Number of ABC Projects in 2013**

### >> Completed 01/31/2014

CDOT Innovative Structure Design and Accelerated Bridge Construction

List of Prefabricated Bridge Element & System Projects (PBES)

Date: 1/13/2014 (The projects updated in this quarter are highlighted with Gray)

Prepared By:

PPC

| Region | Route | Mile Post | Post Structure Number Intersection Location |                   | Location                                                   | Description Special Features                                                                                                                                                  |                                                                                                                 | Construction<br>Year | Previous Region &<br>Remark |
|--------|-------|-----------|---------------------------------------------|-------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|
| 1      | 6     | 64.300    | F-15-L                                      | Elk Creek         | SH6 over Clear Creek in Clear<br>Creek Canyon              | Bridge deck replacement on<br>steel I-girder bridges.                                                                                                                         | Replaced decks with full depth precast decks in 12 days.                                                        | 2004                 | 8 3                         |
| 1      | 6     | 265.356   | F-15-BC                                     | Clear Creek       | SH6 over Clear Creek in Clear<br>Creek Canyon              | Bridge deck replacement on<br>steel I-girder bridges.                                                                                                                         | Replaced decks with full depth precast decks in 12 days.                                                        | 2004                 |                             |
| 1      | 6     | 267.180   | F-15-BA                                     | Clear Creek       | SH6 over Clear Creek in Clear<br>Creek Canyon              | Bridge deck replacement on<br>steel I-girder bridges.                                                                                                                         | Replaced decks with full depth precast decks in 12 days.                                                        | 2004                 |                             |
| 1      | 6     | 278.400   | F-16-XG                                     | SH6               | West corridor RTD Rail / SH-6                              | RTD project. New tied steel Launching of preconstructed arch over arch bridge. Launching of preconstructed arch over highway.                                                 |                                                                                                                 | 2010                 | R6 (RTD)                    |
| 1      | 18    | 0.200     | H-17-AV                                     | E. Plum Creek     | SH18 over Plum Creek near<br>Larkspur, 0.2 Miles from I-25 | Bridge replacement with side by<br>side precast concrete box<br>girders.                                                                                                      | h side by                                                                                                       |                      | Douglas County              |
| 1      | 25    | 186.935   | G-17-AG                                     | Happy Canyon Road | I-25 over Happy Canyon Road,<br>North of Castle Rock       | Replacement of existing bridge with GRS abutments.                                                                                                                            | I selection report of bridge replacement                                                                        |                      | On-Hold                     |
| 1      | 25    | 202.597   | F-17-MG                                     | Yale Avenue       | I-25 over Yale Avenue, Denver                              | Two stage bridge replacement Extra bridge width provided to allow full with precast box girders. Extra bridge width provided to allow full speed traffic during construction. |                                                                                                                 | 1997                 | R6                          |
| 1      | 25    | 210.487   | F-16-XB                                     | S. Platte River   | I-25 over S. Platte River & UPRR                           | Replacement of Bronco Arch<br>with precast tub girders and<br>precast piers                                                                                                   | st tub girders and Full depth precast deck. Precast Piers                                                       |                      | R6                          |
| 1      | 25    | 212.780   | E-16-ON                                     | Park Avenue       | I-25/Park Avenue south-to-east ramp, Denver                | New precast tub girder bridge.                                                                                                                                                | Heavy erection - 200 ton girder segments. Contractor alternatives for using either precast or CIP construction. |                      | R6                          |
| 1      | 25    | 213.626   | E-16-AY                                     | I-70              | I-25 northbound to I-70 ramp                               | Full height panel MSE wall.                                                                                                                                                   | Facing and reinforcement features to minimize excavation footprint and lane                                     | 1993                 | R6                          |



### **Activity 5 Present ABC Projects & Lessons Learned**

- >> Completed 03/2015
- Webminar Completed & Training Rolling-out Soon





# I-70 Grandwood Canyon Precast Segmental Bridges built by Span-by-Span Launching





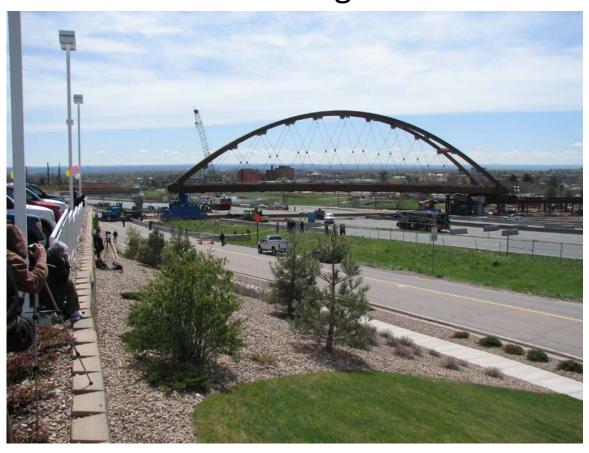


I-25 at Broncos Arch Precast Spliced Tub Girder Bridge built by Lifting-on










# Pecos over I-70 Precast PS Box Girder Bridge moved-in by SPMT





# RTD Fast Tracks over US6 Steel Arch Bridge built by Launching-in





# US34 over Republican River Precast Box Girder Bridge built by Lateral Sliding-in

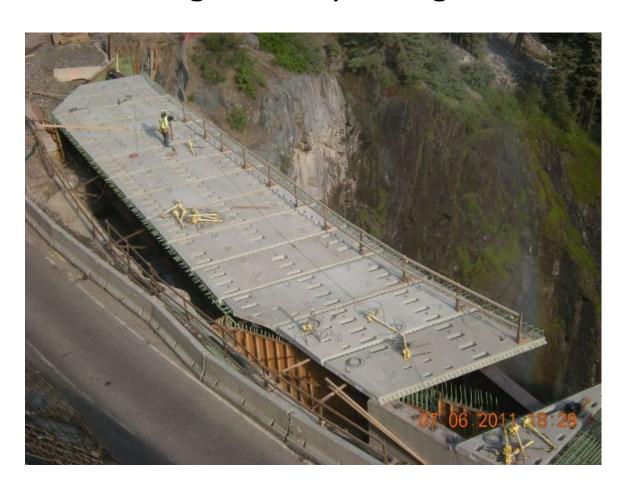






SH66 over Mitchell Gulch Precast Slab Bridge built by Lifting-on & Dropping-in












# US550 over Bear Creek Precast Deck on Steel-I Girder Bridge built by Lifting-on





# US6 Clear Creek Steel-I Girder Bridge Deck Replacement by Lifting-on







# Thank you



# **ABC Experience & Outcomes for CDOT**

#### 1. Who does kick off the ABC discussion in CDOT or hold it?

- CDOT Regional Management

#### 2. What has worked well and what has been more of a struggle?

- Construction time is short and on schedule
- Construction technique is great
- Cost is sometimes not compatible with conventional method

### 3. Have local consultants and/or bought into ABC?

- Yes, they have

### Why or Why not?

Most ABC are CM/GC Contracts (High Tech and Expert Team)

### 4. Is CDOT working on a program wide implement plan for ABC?

- Yes, CDOT is working on it since it has been utilized in 2013



# **ABC Experience & Outcomes for CDOT**

# 5. Have CDOT let the public know about ABC projects and what they can expect?

- Yes, CDOT have let the public know the show case projects
- Public can expect to see short completion of those projects

#### 6. Has cost estimate been an issue?

No, it has not (Pre-scoping Evaluation and FHWA Support)

### For let jobs, did the estimate reflect the bid?

- No, it did not since CDOT work out with local fabricators.



# **ABC Experience & Outcomes for CDOT**

### 7. Lesson learned from past projects?

- Yes, there are new technologies, contracting and publicity methods to complete ABC on schedule

### Things you would do again? Not?

- Lifting-on, Launching-in or lateral sliding-in method is simple to do again
- Moving a bridge by SPMT is costly and not suitable in some areas

### Were ABC designs/specifications problematic for your agency?

No, they were not (Normal document preparation)

### What issues did come up during acquisitions and construction?

- Technique & Cost Competition

### Would you do ABC construction again?

- Yes, we would do it (CDOT Design Bulletin)