

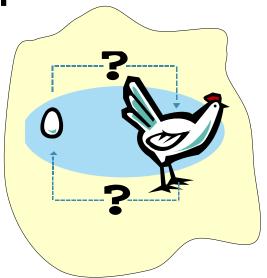
Minnesota DOT ABC Project Selection Methodology Lateral Bridge Slide Experience

Paul Rowekamp, Bridge Standards & Research Engineer Tony Lesch, Bridge Design Build Engineer

September 17, 2015

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

ABC Implementation


- 14 inverted tee bridges
- 2 Brs w/ precast subs (piers, abut., wing walls)
- 2 full depth concrete deck panel bridges (w/PT)
- 2 SPMT projects
- 3 Lateral bridge slides
- 1 Geosynthetic Reinforced Soil (GRS) Integrated Bridge System (IBS)
- Ultra High Performance Concrete (UHPC)

– local project in 2016

Selection by Committee

Issues

Inconsistent implementation Late in design process Funding issues Driven by Bridge Office

Need:

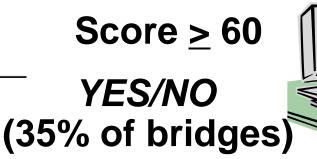
A methodology to provide a consistent, objective, and defensible method of selecting appropriate ABC projects.

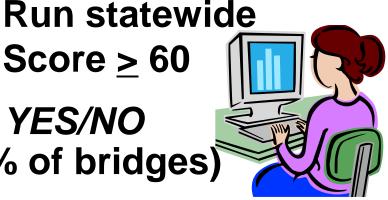
Available Tools: FHWA – Ben Beerman **Utah DOT** Wisconsin DOT (Bridge Design Manual) Iowa DOT (Bridge Design Manual) **Oregon DOT Pooled Fund Project Oregon State Univ. Analytic Hierarchy Process (AHP) Pair wise comparison – tradeoffs**

3 Stage Process

- Stage 1 First Cut
 - ABC looks viable
- **Stage 2 Site specific questions**
- Stage 3 Select Method/Technique
 - Alternative Contracting Options

More than 470


16.7%


5

Selection of Accelerated Bridge Construction Projects

Draft MnDOT Decision Making Tool (DMT) v9 Stage 1 - Score computed using Bridge Management Data: Daily Vehicle Operating Costs - Dependent on Bridge Length 30% Wt. "On Bridge" AADT and HCAADT Only Distribution Score Criteria Bridge Length Factor: 16.0% No user costs n Total Length from 10'-100' = 1.016.7% Less than \$4,150 1 Total Length from 100'-300' = 1.2 16.9% 2 \$4,150 to \$9,250 \$9,250 to \$18,100 Total Length from 300'-500' = 1.6 16.8% 3 16.9% Total Length greater than 500' = 2.04 \$18,100 to \$44,000 More than \$44,000 16 7% 5 User Cost Formula = (AADT x \$0.31/mile + HCAADT x \$0.64/mile) x Detour Length x Br Length Factor Average Annual Daily Traffic (AADT) 20% Wt. Combined "On and Under" Bridge Distribution Score Criteria 16.2% 0 Less than 2,400 16.7% 1 2.400 to 6.650 16.9% 2 6,650 to 13,500 16.7% 3 13,500 to 31,000 16.7% 4 31.000 to 75.000 16.9% 5 More than 75,000 Heavy Commercial Average Annual Daily Traffic (HCAADT) 10% Wt. Combined "On and Under" Bridge Distribution Score Criteria 16.0% 0 Less than 165 16.7% 1 166 to 485 16.7% 2 486 to 1,085 16.9% 1,086 to 1,950 3 16.7% 1,951 to 3,750 4 16.9% More than 3.750 30% Wt. Detour Length Detour Length on Similar Functional Class Rdwy Criteria Distribution Score No Detour 15.9% 0 9.8% 1 Less than 1 mile 24.2% 1-2 miles 2 17.9% 2-7 miles 3 16.2% 7-14 miles 4 15.9% 5 More than 14 miles **Traffic Density** 10% Wt. AADT "ON" Bridge Distribution Score Criteria Vehicles per Day/Ft of Bridge Roadway Width Less than 35 16.0% 0 16.7% 1 35-78 78-138 16.9% 2 16.9% 138-240 3 16.7% 4 240-470

Criteria: User costs Traffic volumes **Heavy commercial Detour length** Traffic density (Started w/ > 30)

Request for Bridge Scoping and Cost Estimating Assessment Bridge Replacement or Major Rehabilitation (Form A)

Dato:

	Dilu	ge nepi	accilient of major Renabili	uuivi						
Trunk Highway(s):		S.P.:	S.A.P:		Letting Date:					
County(s):		City(s):		D	District(s):					
Location:	Location:									
Project Stage: Planning Scoping Other Unique Features:										
] Yes File Name:] Not yet available		Topographic Yes File Name: Information: Not yet available	Mapping						
Bridge:	Inplace Bridge No: Feature Crossed:				A.B.C. Stage 1 Assessment ☐ Yes ☐ No ☐ N/A If Yes, attach Stage 2:					

Roadway Design Information:											
Design Year	Current A.D.T.	Projecte	ed A.D.T.	Design Speed	M.P.H.						
No. of Lanes:	Approach I	nside Shoulder Width	Lin. Ft.		Approach O	utside Shoulder W	/idth Lin. Ft.				
Sidewalk Width Lin. Ft	. 🔲 One Si	de 🔲 Both Sides	Trail Width	Lin. Ft.	🗌 One Side	☐ Both Sides	Median Width	Lin. Ft.			
Environmental Document:	Project M	1emorandum 🗌] EAW		V	🗌 EIS - don	e 🗌 None				
Comments:											

Bridge Estimating Unit:							
Type (Level) of Estimate Required: Planning Level Scoping Level	Total Anticipated Project Construction Cost :						
Stage Construction : Yes No Unknown/Other	Grade Restrictions:						

Bridge Hydraulics Unit:										
Preliminary Analysis Required from the Bridge Hydraulics Unit Yes No Bridge Hydraulic Survey Complete: Yes									🗌 No	
Check All of the Following that are being Requested: 🛛 Bridge Waterway 🗍 Culvert Waterway 🗍 Culvert/Bridge Compari								Comparison		
Substructure Check for Scour Stability	ainage				Countermeasure F	Recommen	dation			
A preliminary waterway recommendation is more likely to be revised if there is minimal data. Check off available data.										
Photos (Upstream, Downstream, Through Structure) Road Profile (Inplace and Proposed)										
Special Considerations (Boat Passage, Bike or Pedestrian Trails, Other)										
Historical Performance (History of Scour, Flooding, Overtopping, Sedimentation, Maintenance)										

Project Contact: Consultant Project Contact: List of Attachments or Location of Files:

Site Specific Issues: Duration Traffic control complexity Construction windows Local business impacts **Risk mitigation 21 Questions**

ACCELERATED BRIDGE CONSTRUCTION (ABC) SELECTION TOOL

STAGE 2 CHECKLIST

Make a determination during scoping whether the following bridge related issues are present or should be considered during project development.

Prepared By:

Project Information:

Date:

District

Bridge No .: TH: Let Date Project Description (work type, major roadway work also required?, anticipated duration)

(Question/Issue		No	Poss	N/A	Comments
1.	Is bridge construction on the critical path of this project?					
2.	Is it likely that this project will include complex traffic control schemes, long detours, or significant user impacts due to bridge construction?					
3.	Is it likely that this project will have an extended duration due to bridge construction?					
4.	Could temporary structures be required?					
5.	Could additional width be needed on culverts, bridges, or shoulders to maintain traffic?					
6.	Are there any issues regarding construction timeframes (e.g. fish spawning, bird nesting, high water, permits, major events)?					
7.	Are there critical features or services on the route that need to be considered (e.g. hospital, emergency services, transit, load restrictions)?					
8.	Could there be a need to maintain railroad traffic?					

Sample questions

Question/Issue	Yes	No	Poss	N/A	Comments
3. Is it likely that this project will include					
complex traffic control schemes, long detours,					
or significant user impacts due to bridge					
construction?					

Is it likely that this project will have an extended duration (more than one construction season, or extend into late fall) due to bridge construction?

Is bridge construction on the critical path of this project?

Does the existing bridge have features that make it difficult to accommodate staging (truss bridge, slab span, beam spacing issues, etc.)?

Is it likely that temporary bridge structures will be needed?

Does it appear that maintenance of traffic will require additional right-of-way?

Conclusion

Conclusion:

Based on the findings & conclusions above, further consideration of accelerated

bridge construction is warranted:

YES D NO Project Manager Name: ____

Date: _____

Comments:

Please send a copy of pages 1 & 2 of this completed form to the Bridge Preliminary Plans Unit at MS 610

If further consideration is warranted the Project Manager should contact the Bridge Office Preliminary Plans Unit and the Regional Bridge Construction Engineer for assistance in selecting appropriate ABC alternatives and techniques.

Select Method or Technique: Staging (1/2 at time) Full-depth precast deck panels Precast substructures Lateral slide Superstructure move – SPMT's Alternative Contracting Options:

Alternative Contracting

- Performance specifications
- Warranties
- A+B
- Lane rental
- Incentive/Disincentive
- Value engineering workshops
- Evening/weekend/non-peak/complete closure
- Design Build
- Const. Manager General Contractor (CMGC)

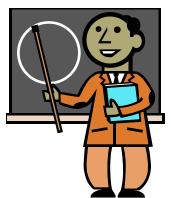
3 Stage Process

- Stage 1 First Cut
 - Fully Automated
 - Bridge Management Data
 - Objective no published scores

Stage 2 – Site specific

- Occurs in District – Multi Discipline

2


- Subjective
- Early Determination/Funding
- District signature/ownership

Stage 3 – Select Method/Technique

- Alternative Contracting Options (Copies Available)

Lessons Learned / Look Ahead

- Pilot Projects District feedback
- Many excellent resources available
 - FHWA
 - Other states
- Early project site identification
 - Get discussion started
- Project Manager ownership
- Statewide implementation in next 2-3 months

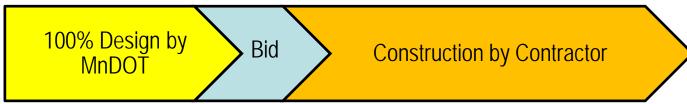
Overview of Lateral Slide in MN

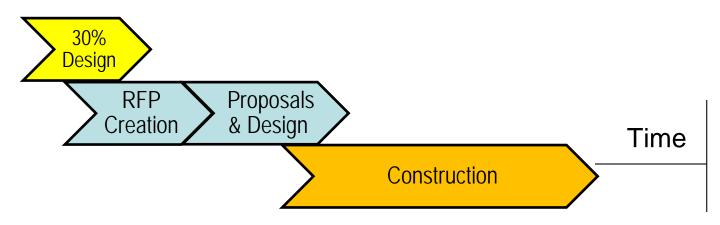
Doing ABC with Design-Build

Tony Lesch, MnDOT Bridge Design-Build Engineer

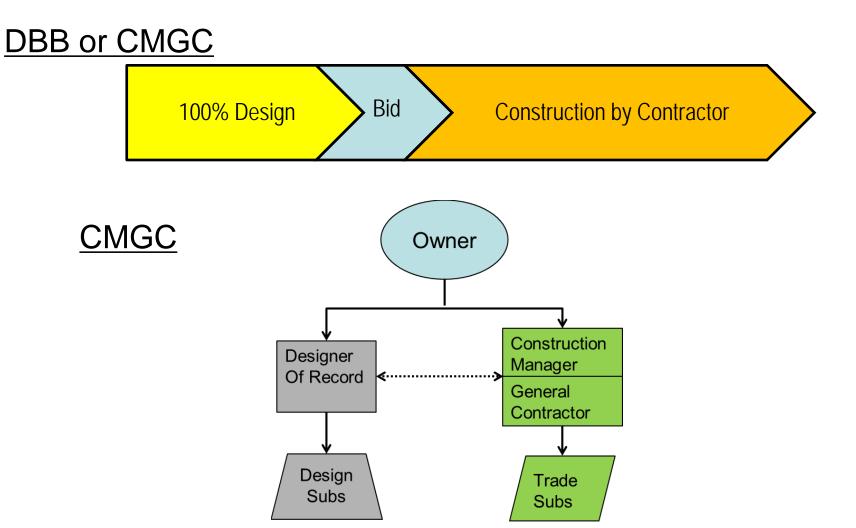
September 17, 2015

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS


Outline


- Delivery Methods
 - Design-Bid-Build
 - Design-Build
 - CMGC
- Lateral Slide at Larpenteur Ave.

MnDOT Delivery Methods


Design-bid-build

Design-build

- 30 Awarded Projects since 1997
 - 20 Best Value
 - \$1 \$234 Million
 - 10 Low Bid
 - \$2.2 \$19 Million
- \$1.6 Billion Total

Benefits

- Accelerated Project Delivery
- Innovation
 - Competing Designs
 - Alternative Technical Concepts (ATCs)
- Risk Transfer (e.g. quantities)
- Reduced Cost (?)
- Flexibility

Drawbacks

- May not be cost-effective
- Risk Transfer (e.g. environmental, third party)
- Oversight resources necessary

Standard Uses

- Complicated Major Projects (10)
 - \$50-250 million
 - Involves all functional areas
 - Significant complexity
- Midsize, Partially-Complicated Projects (10)
 - \$20-50 million
 - At least 1-2 complicated areas
 - Possibly in need of acceleration
- Emergency Accelerations (3)
 - Improvement of dangerous intersections
 - I-35W bridge collapse

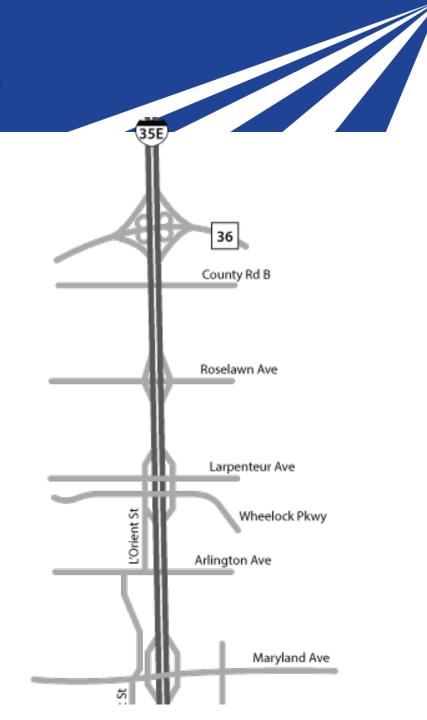
Unique Uses

- Intersection Conflict Warning System (1)
- Groupings of Similar Work Types (3)
- Geotechnical Challenges (2)
- Accelerated Bridge Construction Trial (1)
 - Unfamiliar design and construction
 - Likely CMGC project if let today

Standard Uses

- Complicated Major Projects
 - \$50-250 million
 - Involves all functional areas
 - Significant complexity

I-35E MnPASS


35E MnPASS Project

- DB project to add express lanes (MnPASS lanes) to existing interstate corridor
- Awarded to Ames Construction in July, 2013
- \$98.4 Million
- Completion in Fall 2015

35E MnPASS Project

- Project Details
 - Roadway
 - 9 Bridges
 - Drainage
 - Utilities
 - Noise Walls
 - MnPASS Infrastructure
 - Maintenance of Traffic

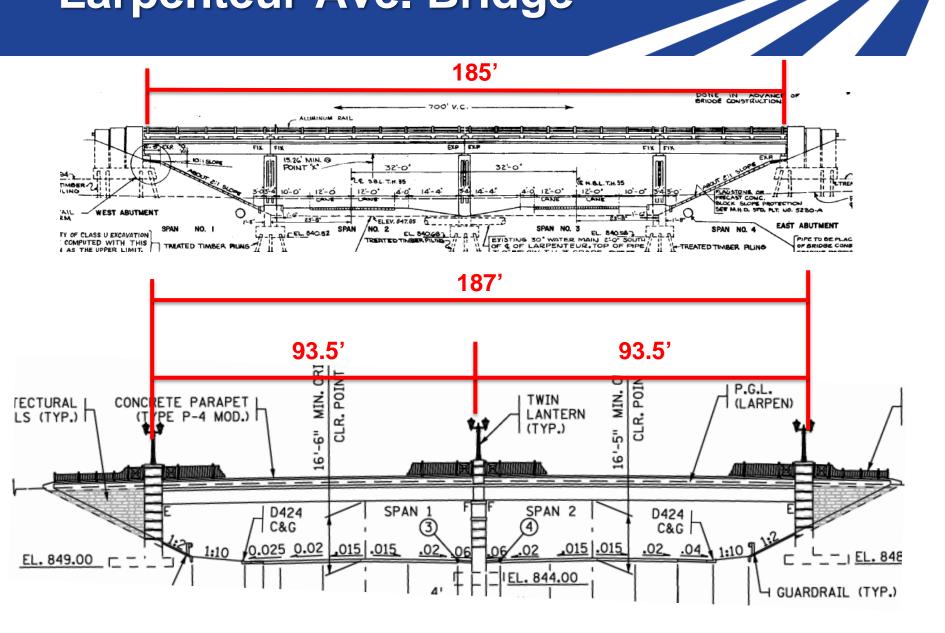
- Largest scored category was MOT
- Contractor to propose number of closure days:
 - I-35E first year
 - I-35E second year
 - Cross Streets

Best Value

- Ames Proposal
 - Close Larpenteur for only 47 Days
 - ATC to use SIBC (contract required all bridges cast-in-place)

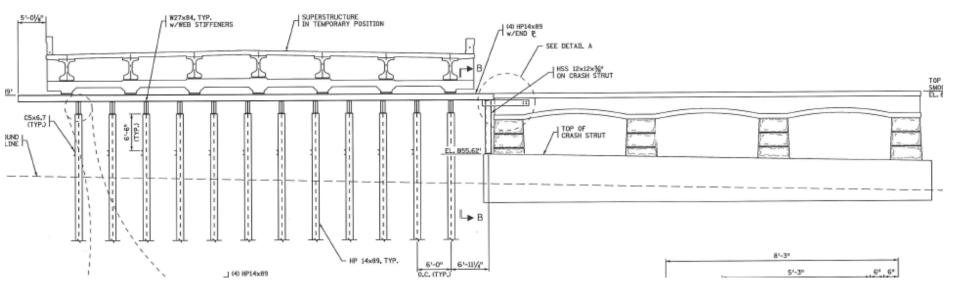
Larpenteur Ave. Bridge

- 4-span bridge built in 1958
- 4 lanes, narrow shoulders, one narrow sidewalk



Larpenteur Ave. Bridge

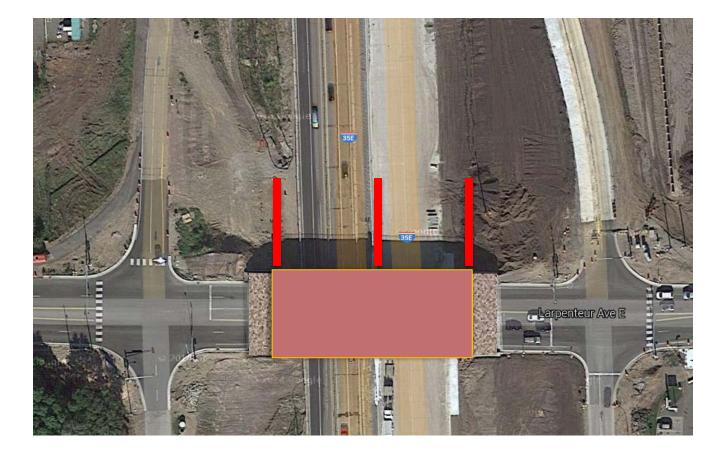
- 2-span bridge built in 2014 longer spans
- 4 lanes plus turn lane, wider shoulders, wider sidewalk


Larpenteur Ave. Bridge

SLIDE IN BRIDGE CONTSTRUCTION

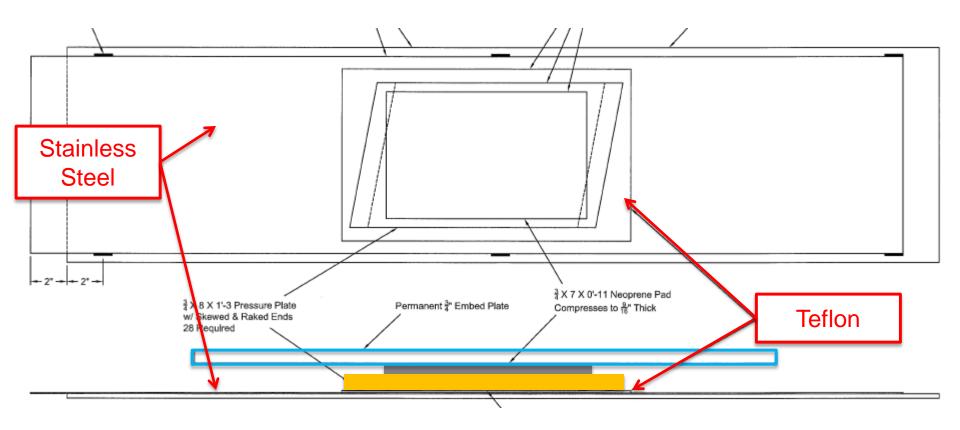
Temporary Supports

Temporary Supports



Slide System


- Hydraulic Jacks
- Jack Floats
- Dog Plates



Slide System

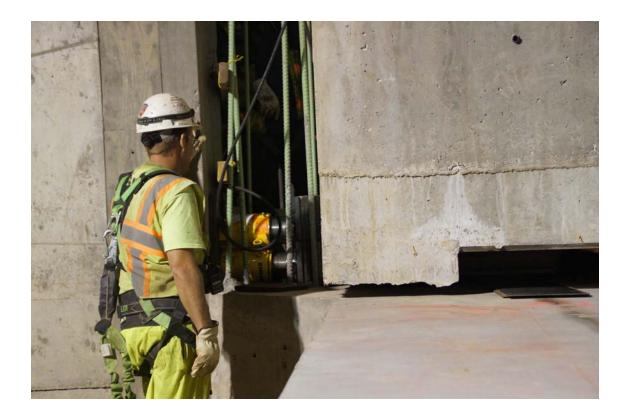
Teflon on Polished Stainless Steel

- Slide both spans together
- No Live Traffic
- Test Pushes
- Full Closure of Interstate
- Plan to move in one overnight closure
- Took two nights

What issues were encountered?

Slide Table Cast Against Pier, Damaged Concrete

Tolerance on track system fabrication


Tolerance on track system fabrication

Bridge Walked Sideways

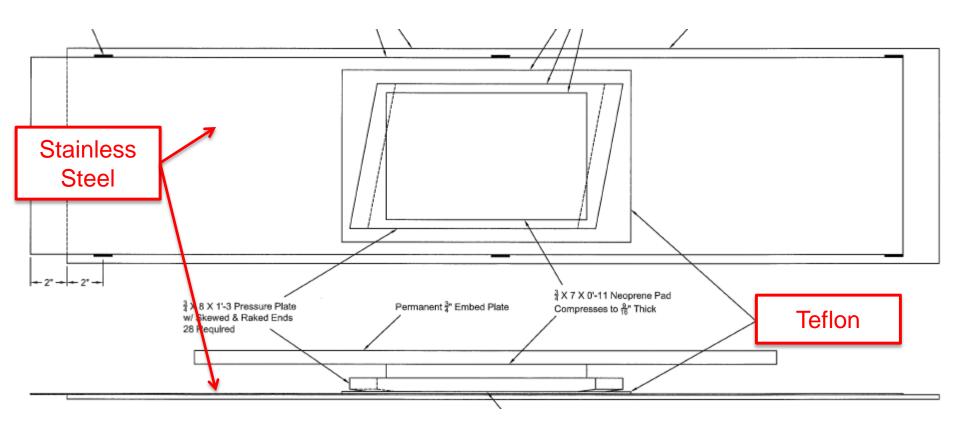
Bent/Binding Guide Brackets

Bent/Binding Guide Brackets

Bridge Slide System

• Use lubricant (dish soap), but not too much

Bridge Slide System


- Use lubricant (dish soap), but not too much
- Use a Single Pump (keep it simple)

Bridge Slide System

- Use thicker teflon
- Use thicker elastic medium for deviations in concrete and steel
- Design to reduce field welding
- Use readily-available materials (and reusable)
- Design for "field friendly" tolerances
- Secure the sliding mechanism to bridge

Slide Execution

- Prepare contingency plans
- Survey a lot (after every step and load)
- Clearly identify stopping points for critical locations
- More Lighting
- Radio Communication
- Use scaffold/walkways rather than man lifts

Minnesota DOT ABC Project Selection Methodology Lateral Bridge Slide Experience

Paul Rowekamp, Bridge Standards & Research Engineer Tony Lesch, Bridge Design Build Engineer

September 17, 2015

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

